
Inv ISI/SR-81-19

1980
1W 1111AnnualTechnical Reor 11MEMOWN.

VOL.1I
October 1979 - September 1980

A Resea rch Prog ra m i n Com puter Tech nology

Prepared for the

Defense Advanced Research Projects Agency

0~ K 2 1.

4676 Admiralty Wray Marina del Rey California 90291

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (WNhen Data Entered) (J

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. $ RECIPIENT'S CATALOG NUMBER

ISI/SR-81-19 -A,.,'/5 _,,//,_

4. TITLE (md Subtitle) S. TYPE OF REPORT I PERIOD COVERED

Annual Technical Report
1980 Annual Technical Report: October 1979 -September 1980
A Research Program in Computer Technology 6. PERFORMING ORG. REPORT NUMMER

7. AUTHOR(e) 11. CONTRACT OR GRANT NUMSEI(s)

ISI Research Staff DAHC 15 72 C 0308

S. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT, TASK

USC/Information Sciences Institute AREA & WORK UNIT NUMIERS

4676 Admiralty Way
Marina del Rey, CA 90291 ARPA Order #2223

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency August 1981
1400 Wilson Blvd. IS. NUMBER OF PAGES

Arlington, VA 22209 145
74. MONITORING AGENCY NAME & ADDRESS(I diterent fhom Controlling Office) IS. SECURITY CLASS. (of thie report)

Unclassified

ISO. DECL ASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

This document is approved for public release and sale;
distribution is unlimited.

17. DISTRIBUTION STATEMENT (of Che abetract entered In Block 20, II different Iom Report)

IS. SUPP.EMENTARY NOTES

IS. KEY WORDS (Continue on reverse side if neeeeay and identify by block number)

1. abstract programming, domain-independent interactive system, HEARSAY Ill, natural language,
nonprocedural language, nonprofessional computer users, problem solving, problem specification,
process information

2. abstract data type, abstraction and representation, Affirm, Alphard, Euclid, interactive theorem
20. ABSTRACT (Continue on reveree aide if neceeear/ ind Identify by block nmber)

rThis report summarizes the research performed by USC/Information Sciences Institute from

October 1, 1979, to September 30, 1980, for the Defense Advanced Research Projects Agency. The
research applies computer science and technology to areas of high DoD/military impact.

The ISI program consists of fourteen research areas: Soecification Acouisition From Experts .
study of acquiring and using program knowledge for making informal program specifications more
precise; Program Verification - logical proof of program validity; Auts - research on source-to-
source program translation combining automatic techniques with an interactive system to provide the

DD , 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (len Date intered)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGOE(en Del. ante,.d)

19. KEY WORDS (continued)

proving, Pascal, program correctness, program verification, rewrite rules, software specification,
verification condition

3. Ada. Autopsy, CMS-2, DOD-1, program conversion, program equivalence, program translation,
source-to-source transformation

4. Ada, denotational semantics, formal definition, formal semantic definition, typed lambda calculus
5. implementation of interactive systems, knowledge base, knowledge-based inference, natural

interface, online services, process script, service building, tool building, user interface
6. command and control graphics, computer graphics, high-level graphics language, on-line map

display
7. computer mail, gateways, interconnection, internetwork protocol, networks, protocol design,

protocols, protocol verification, transmission control protocol, type-of-service
8. computer network, digital voice communication, network conferencing, packet-switched networks,

secure voice transmission, signal processing, speech processing, vocoding
9. communication protocols, cooperation between decentralized processes, DSN modeling, packet

radio network, position-location, rigidity, sensor networks
10. command and control, digital voice communication, graphic input device for terminal, multimedia

communications, portable terminal, radio-coupled terminal
11. application splitting, central processor, dedicated local processing, disttibuted processor system,

man-machine interface, partitioning, resource allocation, responsiveness, terminal processor
12. document preparation, editor/formatter, Network Virtual Terminal, partitioning, state-of-the-art

terminal, virtual document
13. AN/UYK-20, emulators, ISPS, microprogramming, MULTI, multimicroprocessor emulation, National

Software Works, program development tools, QM-1, OPRIM, Smite
14. application software, ARPANET, customer service, hardware, interface, computer network, KA/KI,

KL1 0/KL20, operations, PDP- 11/45, resource allocation, system software, TENEX, timesharing,
TOPS-20

20. ABSTRACT (continued)

human manager complete control over the translation process; Formal Semantics - development of
tools and methodologies to support the formulation of precise, readable, and accurate formal
semantic definitions; Cooperative Interactive Systems - construction of a system to provide natural
input/output and help facilities for users of interactive services; Command and Control Grahic -

development of a device-independent graphics system and graphics-oriented command and control
applications programs; Internetwork Concets - exploring aspects of protocols for the
interconnection of computer communication networks, specifically the design and prototype
implementation of an internetwork computer message system and the design of internetwork host

and gateway protco Network Secure Communication/Wideband Communication - development of
protocols and real-tine systems to transmit digitized voice over the ARPANET and development of
technology required for the future support of thousands of simultaneous conversations being
transmitted over a wideband satellite channel in the internetwork environment; Distributed Sensor
Networks - formulation of algorithms and communication protocols to support the operation of
geographically distributed sensors; Personal Communicator - work intended to result in a
demonstration-level portable terminal to test and evaluate various solutions to the issues raised by
extreme portability in the packet radio environment; Ayolication Downloading - research on
downloading interactive applications into a terminal, resulting in a decrease in demand for shared
central processor time; MAST - development of a terminal that will support multiprocess or NSW tool
interaction through multiple windows and an efficient scope editor that will divide editing
responsibility between the host and the terminal; OPRIM - production of an online interactive
emulation facility housed in an existing mature operating system; and Computer Research Supoort -
operation of TENEX and TOPS-20 service and continuing development of advanced support
equipment.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(WOhon Del nerod)

ISI/SR-81-19

1980
. .Annual Technical Report "t0'1 1°1w. * M .__

VOL. 1
October 1979 - September 1980

A Research Program in Computer Tech nology

Prepared for the

Defense Advanced Research Projects Agency -

Effective date of contract: 17 May 1972

Contract expiration date: 30 September 1981 .

Principal Investigator and Executive Director: Keith W. Uncapher
(213)9822-1511

Deputy Director: Thomas 0. Ellis
(213) 822-1511 cr

This research is supported by the Defense Advanced Research Projects Agency under Contract No. DAHC15 72 C 0308, ARPA

Views and conclusions Lontained in this report are the authors' and should not be interpreted as representing the official opinion
or policy of DARPA, the U.S. Government or any other person or agency connected with them.

This document is approved for public release and sale; distribution is unlimited.

UNIVERSITY OF SOUTHERN CALIFORNIA INFORMA lION L(CIENCER INSTITUTE
4676 Admiralty Way Marina del Rey California 90291

RESEARCH AND ADMINISTRATIVE SUPPORT

Institute Administration:
Robert Blechen

Tardia Dinkins
Gail Geppert
Judy Gustafson
Maureen Jester
Toni Leon

Gina Maschmeier

Graphics Manager:
G. Nelson Lucas

Librarian:
Sally Hambridge

Publications:
Jim Melancon

Secretaries to Directors:
Patricia A. Craig
Joyce K. Reynolds

iii

CONTENTS

Summary iv

Executive Overview v

1. Specification Acquisition From Experts 1

2. Program Verification 9

3. Autopsy 21

4. Formal Semantics 31

5. Cooperative Interactive Systems 37

6, Command and Control Graphics 53

7, Internetwork Concepts Research 57

8. Network Secure Communication/Wideband Communication 65

9. Distributed Sensor Networks 79

10. Personal Communicator 89

11. Application Downloading 97

12. Multiapplication Support Terminal 115

13, OPRIM 119

14. Computer Research Support 127

ISI Publications 133

iv

SUMMARY

This report summarizes the research performed by USC/Information Sciences Institute from
October 1, 1979. to September 30, 1980, for the Defense Advanced Research Projects Agency. The
research applies computer science and technology to areas of high DoD/military impact.

The ISI program consists of fourteen research areas: Specification Acquisition From Experts - study
of acquiring and using program knowledge for making informal program specifications more precise:
Program Verification - logical proof of program validity; Autopsy - research on source-to-source
program translation combining automatic techniques with an interactive system to provide the human
manager complete control over the translation process; Formal Semantics . development of tools and
methodologies to support the formulation of precise, readable, and accurate formal semantic
definitions; Cooperative Interactive Systems construction of a system to provide natural
input/output and help facilities for users of interactive services; Command and Control Graphics -

development of a device- independent graphics system and graphics-oriented command and control
applications programs; Internetwork Concepts - exploring aspects of protocols for the
interconnection of computer communication networks, specifically the design and prototype
implementation of an internetwork computer message system and the design of internetwork host
and gateway protocols; Network Secure Communication/Wideband Communication - development
of protocols and real-time systems to transmit digitized voice over the ARPANET and development of
technology required for the future support of thousands of simultaneous conversations being
transmitted over a wideband satellite channel in the internetwork environment; Distributed Sensor
Networks - formulation of algorithms and communication protocols to support the operation of
geographically distributed sensors; Personal Communicator - work intended to result in a
demonstration-level portable terminal to test and evaluate various solutions to the issues raised by
extreme portability in the packet radio environment; Application Downloading - research on
downloading interactive applications into a terminal, resulting in a decrease in demand for shared
central processor time; MAST - development of a terminal that will support multiprocess or NSW tool
interaction through multiple windows and an efficient scope editor that will divide editing
responsibility between the host and the terminal; QPRIM - production of an online interactive
emulation facility housed in an existing mature operating system; and Computer Research Support -

operation of TENEX and TOPS.20 service and continuing development of advanced support
equipment.

V

EXECUTIVE OVERVIEW

The University of Southern California Information Sciences Institute (ISI) is a large information
processing research center located in Marina del Rey. California.

Is's principal focus is research in the field of information processing and digital communication. A
majority of the research is application and systems oriented. ISI maintains a strong basic research
program to support the application and systems focus. The Institute also is committed to a support
role providing both general-purpose and special-purpose computing to a very large number of
external users, as well as supplying most of ISIs internal needs.

The research programs at ISI are summarized below. Although a few of the projects are discrete in
nature, most form parts of a larger theme.

For example, the Specification Acquisition, Program Verification, and Autopsy projects should be
considered as individual parts of an overall research effort in programming methodology and quality
software; Wideband Communication, Distributed Sensor Networks, Internetwork Concepts Research,
Command and Control Graphics, Personal Communicator, Cooperative Interactive Systems,
Application Downloading, and MAST are linked elements of a major investigation into man-machine
and network communications technology. This mutual reinforcement among the various projects at
ISI contributes largely to the productivity of the Institute's research activities.

Specification Acquisition From Experts. This work is directed at helping people create
unambiguous, consistent, and complete formal program specifications through informal description.
While end users are quite capable of providing informal process-oriented descriptions of the task
being automated, formalisms of any kind provide major impediments. The informal descriptions are
characterized by partial, rather than complete, constructs. The system uses a knowledge base of
program well-formedness rules to disambiguate and complete the informal natural language
descriptions. An early version of the system has successfully converted several small informal
specifications into formal specifications. Attention is now focused on handling large specifications
through incremental formalization; to support this, a generalized Al architecture for knowledge-based
systems, based on the Hearsay-II blackboard model, has been designed and implemented.

Program Verification. In its most restricted sense, program verification is the task of proving the
consistency of a given program with its given specifications (what is often called the "correctness" of
the program). The purpose of verification may be either (positively) to establish consistency for
certification purposes or (negatively) to discover inconsistency as a step in debugging. In a broader
sense, program verification is an analytic and synthetic tool for addressing a wider range of software
quality considerations than just the consistency of the final specification and final program. The
problem being solved by this project is two-fold: (1) the specific problem of finding and refining the
appropriate mathematical proof methods and (2) the more general problem of integrating these
methods with the software design and development processes. In 1980, the project experimented
extensively with a usable verification system, Affirm, supported outside users, and applied the
system to a major effort in communication protocols.

Autopsy. The Autopsy project has been investigating translation of programs from old languages
into new languages. While it is clear from both theory and practice that translation between arbitrary
languages is not likely to succeed, the less ambitious goal of translation between "compatible"

vi

languages may be quite reasonable. The approach has been to develop an interactive system that
contains an array of tools for the user to deploy in translation, These tools must exist within a
coherent framework. so an interactive monitor to govern access and use of these tools has been
designed. Central to the design of the tools is the Autopsy intermediate language. which is used for
representing. editing, and verifying the translations. The work of this project has focused on
translation between a specific pair of languages, CMS-2M and Ada.

Formal Semantics. The principal goals of this project are the development of tools and
methodologies for supporting the development of precise, readable, and accurate formal semantic
definitions of programming languages. The specific research focus of the project is building tools for
manipulating, processing, implementing, and testing the formal definition of Ada written by a group at
the Institut National de Recherche en Informatique et en Automatique in France.

Cooperative Interactive Systems. The Consul system is designed to provide a natural,
consistent interface for the user services of an interactive environment. User activities such as
sending messages, maintaining an appointment calendar, generating graphical displays, now
handled by separate subsystems, will all be accessible through a single interface that allows natural
language input and provides help to the user. This is achieved through knowledge-based inference
on a detailed model of user and system behavior. Research issues include knowledge representation
and inference techniques, acquisition of domain-dependent knowledge. explanation, and software
methodology. The current prototype system demonstrates natural interaction with a message
service.

Command and Control Graphics. As more command and control information is maintained in
computer form, computers will need to take a more active role in the presentation of that information.
To facilitate the decision-making process, online computer-generated color graphics wil(replace
binders of batch-generated printer listings. The purpose of this project has been to develop a system
architecture to meet current and future C2 graphic requirements, with particular attention paid to
adaptability to available computation, communication, and display resources, usability in a
transnetwork environment, and ability to support the creation of pictures for us' outside the
immediate application environment. The work has resulted in the definition and implementation of a
C2 Graphics System on the ARPANET. Future work will include the transfer of the graphics system to
small, powerful 16-bit microprocessors and the development of a briefing-aid application.

Internetwork Concepts Research. This project explores the design and analysis of computer-
to-computer communication protocols in multinetwork systems. The project has three task areas: (1)
Analysis, (2) Applications, and (3) Design and Concepts. Protocol Analysis is concerned with the
correctness of protocols, in particular Transmission Control Protocol (TCP). Protocol Applications is
concerned with the development of demonstration internetwork applications, in particular a prototype
computer message system. Protocol Design and Concepts is concerned with the development ef
network and transport protocols, in particular the Internet Protocol and TCP, and seeks new
approaches in the application of packet switching to communication problems.

Network Secure Communication/Wideband Communication. The ISI Network Secure
Communication (NSC) Project has been instrumental in the development of protocols and real-time
systems to transmit digitized voice over the ARPANET, both in point-to-point conversations and
multisite conferences. The project is now broadening its scope as the Wideband Communication
(WBC) Project, which will develop the technology required for the future support of thousands of
simultaneous conversations being transmitted over a wideband satellite channel in the internetwork

vii

environment. It will advance packet voice from a demonstration program to an experimental system
continuously available for use in the transaction of normal daily business. While the NSC project
concentrated on voice communication, the WBC Project will work on integrated communication of
several media, including voice. The goal is to deelop real-time multimedia teleconferencing using
wideband packet-switched networks. The nitial emphasis other than voice will be on the
development of a video bandwidth compression system which operates in real time and takes
advantage of the ability of a packet-switched network to accommodate varying bandwidth
requirements.

Distributed Sensor Networks. The major goal of the DSN project was to develop and export
technology aiding the implementors of distributed and decentralized systems. The first step in this
direction was derivation of an adequate description of the DSN problem space. This included not
only detailed knowledge of what phenomena a DSN must confront and what types of components are
available, but also understanding why some systems are more highly valued than others. In other
words, the goal was to develop objective methods of evaluating a system's performance. The
research was directed toward the general problems of DSNs, particularly, system issues that were
both sensor- and scenario-independent. The following areas were studied: the communication
problem, the architecture problem, the organization problem, the user interface problem, the
position-location problem. and the distributed algorithm problem.

Personal Communicator. This effort explores the design and application of personal, portable
computer communication terminals that provide text, graphic, and voice modes and synchronized
combinations of them. The existence of full-time, location-independent, handheld access to
communications will allow fuller exploitation by the services of the area coverage and dynamic
flexibility of packet radio. The goal of the exploratory design and experimental operation of model
communicators within a multimode message system is to expose the functional and architectural
parameters of the terminal and its user interface behavior, for the guidance and support of future
designs of operational portable communicators and their associated systems.

Application Downloading. The rapid advancement in the processing capabilities of computer
terminals provides an opportunity to allow terminal processors to share in the execution of application
programs. The downloading of interactive applications into a terminal may often result in a decrease
in demand for shared, central processor time. However, developing such distributed application
programs is a difficult task. This difficulty is mitigated by first allowing an interactive application to be
designed, implemented, and tested using standard development techniques in a single-processor
environment; and then semiautomatically partitioning and optimizing the application in a distributed
processor system consisting of a terminal and a host computer.

Multiapplication Support Terminal. The MAST project is a development effort to demonstrate
the use of applications partitioned between terminal and host with reduced dependency on host and
communications resources. The effort demonstrates how to take advantage of the capabilities of
state-of-the-art terminals and examines the issues of application software preparation, user interface,
host interface, and ARPANET interface.

QM- 1 Programming Research Instrument. The QPRIM effort is producing an online interactive
emulation facility housed in an existing mature operating system. QPRIM aims to bring program
execution and testing into the programmer's working environment without paying the typically
prohibitive cost involved in utilizing a simulation program on the development host. The PRIM project
built such a prototype facility within the TENEX operating system; that facility was operational at ISI

viii

from 1974 until 1979. OPRIM is a PRIM-like emulation facility running under the DEC TOPS-20
operating system and utilizing a production-emulation engine, the Nanodata QM-1. An interface unit
between the DECsystem 20 and the QM-1 was installed in March 1979. The facility has been running
and available at ISIB since June 1980. As part of the system shakedowv,, an emulator for the
AN/UYK-20 will be written and tested.

Computer Research Support. ISI supports, operates, and maintains one TENEX and five TOPS-
20 systems at ISI on a schedule of 164 hours per week. TENEX/TOPS-20 service is provided both to
ARPA and to its research projects via the facilities at ISI. ISI also operates one TENEX and one TOPS.
20 system at a computer center that is part of the Command and Control Testbed at the Naval Ocean
Systems Center, San Diego, Calif. The Institute provides support lor the Penguin at ARPA-IPTO, NLS
user support, and NLS software support. The Institute also provides remote training and
documentation for its military users in order to allow them to make the most effective use of the
available facilities.

1. SPECIFICATION ACQUISITION
FROM EXPERTS--SAFE

Research Staff: Support Staff:
Robert Balzer Joan Elliott

Jeff Barnett
Don Cohen
Lee Erman
Neil Goldman
Philip London
David Wile

1.1 PROBLEM BEING SOLVED

With the increasing sophistication and complexity of weapon and logistical systems. and the
decreasing cost of computer hardware, the role of software within the military is becoming
increasingly critical. System capabilities and costs are increasingly being determined by the
complexity, costs, and lead times of the embedded software. The demand for such software far
exceeds the military's capability to produce it.

Inadequate (informal) specifications have repeatedly been identified as the prime cause of poor
software.' Much attention has been focused on the creation and use of formal specifications to help
alleviate this problem. Unfortunately, writing such specifications is quite difficult because of the
formalism itself, the need for absolute consistency, and the need for massive amounts of detail.

For this reason, we have been developing a tool which aids users by converting their informal
specifications into formal ones. The user benefits of such informal specifications are that they are
familiar (there are even MIL.SPECS describing them). they suppress information that is (thought to
be) easily inferable, and they are far more understandable. Ultimately, our tool will allow users to
continue enjoying these benefits as well as those arising from the existence of a formal specification'
its use as an implementation contract, as a testable system prototype. and as an analyzable object to
determine its properties and/or deficiencies.

In addition to our central goal of developing a theory of understanding and formalizing informal
specifications, we have deveooed two important by-products which have influenced, and are being
used by. other ISI projects- a for-,al specification language (Gist) and an Al eypert-writing system
(Hearsay-Ill).

'CCIP.85 study High Cost of Software Conference

2 SPECIFICATION ACQUISITION FROM EXPERTS-SAFE

1.2 PROGRESS

1.2.1 S\FF

The prototype SAFE system has understood and correctly formalized several real-world, albeit
simplified, specifications extracted from actual MIL-SPEC 490-B5 specification manuals. It then
successfully handled twenty-five perturbations of these examples as a demonstration of its
robustness on such small simplified specifications. We believe these results demonstrate the basic
feasibility of our approach.

The remaining watershed issue for our line of research is whether this approach can be scaled up
to handle large, practical-sized specifications. Recognizing the inherent limita*ions of the prototype
system (depth-first backtracking as a search paradigm. a three-pass "compiler" organization,
procedurally embedded knowledge, and an inadequate formalism for expressing specifications), we
completely rebuilt the system. This proved most difficult because, in addition to scaling the system to
handle specifications that are almost two orders of magnitude larger. it was necessary to
simultaneously change both the form of the knowledge used and the basic paradigm of the system.

These two changes were essential not only for the current work (applying the system to large,
unsimplified real-world specifications) but also for the work we are planning. The first change
(knowledge format) enabled us to substitute a rule-based expert system for the ad hoc, procedurally
embedded knowledge in the old system. This new format provides a much more adaptable
knowledge base to augment as we explore further the flexibilities of informal specification. This
change has been completed and is based on the Hearsay-Ill system (see section 1.2.3).

The second change (the paradigm employed) provides a much sounder methodological foundation
for further work. Unlike the old system, which processed the entire input through three successive
passes, the new system incorporates a single new sentence into the current interpretation(s). As a
result. the grain size of an experiment has been drastically changed from handling an entire
specification to extending an interpretation to include more information (one sentence worth). As we
are basically building a theory of how informal specifications can be understood and formalized,
running experiments is crucial to the iterative development of that theory. Reducing the grain size to
a single sentence makes it far easier to run such experiments. This change has been completely
designed and partially implemented.

1.2.2 Formal Specifications

We developed an adequate formal language (Gist) to express specifications. This language differs
from other specification languages in its ability to formally express constructs commonly found in
informal specifications (rather than relying on provability criteria), its database viewpoint, its
commitment to operationality, its tolerance of incompleteness, and its avoidance of implementation
issues. This ARPA-developed language is the basis for a specification validation project sponsored
by RADC. a transformation-based development system sponsored by NSF, and a new ARPA project
that is developing mappings from these specification constructs into implementations. In addition to
these roles, it also is the output language for SAFE and is beginning to act as its domain of expertise
(see section 1.4.1). Gist thus occupies a central position in our effort.

PROGRESS 3

Among the unique features of this language are:

1 Semantic use of constraints. Rather than treating constraints as redundant
specifications which could be used for checking consistency. Gist uses them to restrict
the acceptable interpretations for nondeterministic constructs. Only those choices which
don't violate constraints now, or in the future, are acceptable. This use of constraints
provides an extremely powerful formal specification construct which enables us to
describe a process behaviorally, rather than algorithmically, in a way closely paralleling
the informal way we resolve ambiguity in natural language.

2. Database view including inference. Gist represents the current state of a modeled system
as a global database of relations among typed objects. Actions cause these relationships
to change. The state of the database and of the objects within it is accessed through a
uniform information extraction (query) language. This language locates objects through
descriptions of their relationships to other objects. Furthermore, it hides the distinction
between explicit and implicit information by including inference within the information-
extraction language. Since a major portion of any computing system is concerned with
spreading the effects of changes that occur, the self-organizational aspect of the
automatic inference mechanism allows this portion of the system to be completely
suppressed from the specification.

3. Historical reference. In addition to providing a uniform method of extracting information
from the current state. Gist provides the same capability for all previous states of the
system. This means that when historical information is needed, it can be directly
referenced in the specification. This direct reference avoids having the specifier invent
and maintain an auxiliary data structure, and closely approximates the informal
mechanisms used in natural language.

1.2.3 Hearsay-ll

We designed and implemented an Al expert-writing system called Hearsay-Ill, as a base for the
revised SAFE system. It is currently being used by SAFE and two other ISI projects. Hearsay-Ill is a
domain-independent tool for constructing knowledge-based systems. Its target is large, complex
problems, for which many interacting sources of knowledge are required, specifically including those
whose solutions are synthesized incrementally from partial solutions, and excluding "diagnosis"
problems in which a solution is chosen from among an easily enumerated set.

The Hearsay-Ill system was designed to provide facilities to represent, compare, and pursue
competing, incrementally constructed problem solutions. It is intended to support experimentation
with long-term, large-system development. In particular, the design goals of the Hearsay-Ill system
focus on development and debugging of theories of expertise in an application domain; its main goal
is to allow for study of a domain, rather than to construct an expert performance system.

Hearsay-Ill adopts the heritage established by the Hearsay-Il speech understanding system in that
many of the mechanisms available to the system builder in Hearsay-Ill are generalizations of
mechanisms present in Hearsay-Il. However, Hearsay-Ill is domain-independent; it has no specific
knowledge of speech understanding or any other domain at the outset.

Hearsay-Ill provides primitives that encourage a certain architectural style in the target system. This
architecture includes the following features:

1. A structured workspace (called a blackboard) encouraging a hierarchical representation
of data organized by various levels of abstraction.

2. Condition/action rules (called knowledae sources) which react to situations represented

4 SPECIFICATION ACQUISITION FROM EXPERTS--SAFE

on the blackboard, and whose action components can modify the blackboard. Condition
satisfaction and action invocation are independently controllable events. The action
component of a knowledge source is arbitrary interlisp code, and thus all of its
mechanisms for composition and abstraction can be used to raise the level of action
expression above that of the Hearsay-Ill system primitives.

3. A metalevel problem solver to which the same facilities are available (i.e., it can use a
scheduling blackboard and scheduling knowledge sources). The task of this problem
solver (called the scheduler) is to resolve conflicts among the potentially large number of
knowledge sources whose conditions have been satisfied. The scheduler chooses the
next knowledge-source action to execute, The ability to construct a knowledge-based
scheduler that reasons about pending knowledge-source activations provides an
important step in the direction of separating competence knowledge from performance
knowledge in the target system.

4. Facilities for explicitly representing decisions as data. Choices being considered by a
Hearsay-Ill problem solver can be encoded on the blackboard. Decisions represented in
this way can satisfy knowledge-source patterns, and can be modified by knowledge-
source actions. Decisions therefore can be reasoned about in much the same way as
other objects appearing on the blackboard.

5. The blackboard and all publicly accessible Hearsay-Ill data structures are represented in
a relational database (called the AP3 database). The AP3 database is similar to those
available in languages such as PLANNER. but it also includes strong typing for each of
the relational arguments in both assertion and retrieval. These typed relational
capabilities are available for directly modeling the application domain.

6. A context mechanism, which allows independent pursuit of competing approaches to
solving a problem. The context mechanism allows several different versions of the
blackboard, representing competing partial problem solutions considered in separate
worlds, to be examined and manipulated independently by the knowledge sources.

1.3 RESEARCH ISSUES

1.3.1 SAFE

The SAFE system is a knowledge-driven system based on four types of knowledge: detecting
informal constructs, proposing alternative interpretations, testing interpretations, and augmenting
interpretations (to make them acceptable). Each of the knowledge bases is incomplete and ad hoc.
having been built on an as-needed basis from our test specifications. With the system rebuilt in
Hearsay-Ill, it is now possible for us to easily add new knowledge to each of these areas in a
systematic manner.

In addition to using these four types of knowledge, which deal directly with the task of formalizing
informal specifications (called the competence knowledge), the SAFE system must also use another
type of knowledge to decide which alternative interpretations of the informal constructs to explore
and incorporate into the formalized specification. One of the big advantages of the use of Hearsay-Ill
is that this knowledge (called the performance knowledge), which guides the search through a space
of possibilities by controlling and scheduling the competence knowledge. is also represented as a
knowledge base of rules. Thus, just as the competence knowledge is accessible and augmentable.
so too is the performance knowledge.

As part of our current effort, we are slowly building up the performance knowledge. This process is
slow because we, and the research community in general, have little experience with such metalevel
performance knowledge and because. as opposed to the competence knowledge which has existed

RESEARCH ISSUES5

(albeit in procedurally embedded form) throughout this effort. no performance knowledge previously
existed.

The old system simply used depthfirst backtracking guided by well-formedness constraint
violations to explore the space of possible interpretations. It is well known that this technique does
not scale up. and it was abandoned as we began to explore large specifications. Our utilization of
performance knowledge for SAFE is thus quite recent.

1.3.2 Manipulation and Readabilit of Formal Specifications

Through the development of the Gist formal specification language during our current IPTO effort.
and as part of our RADC effort to apply Gist to military specifications. we have acquired some
experience with formal software specifications. We have discovered that while the Gist language has
made considerable progress towards simplifying the creation of adequate formal specifications.
mainly through the availability of appropriate semantic and modeling constructs, it has not helped the
specification readability problem.

This lack of readability -:' f ormal specifications (for both Gist and other formal specification
languages) is a major impediment o the utility of formal specifications. It arises from a simplistic
mathematical orientation towards formal specifications which (overstated) holds that all the
necessary information merely needs to be stated (and be self.consistent) in the formalism together
with the rules of inference. Then any derived information can be mechanically computed.

This view unfortunately neglects to recognize that, for people, form is as important, if not more
important, than content. Thus, in addition to ensuring that all needed information is stated and is self
consistent, the way that it is structured and presented is crucial for understanding. The lack of
readability of formal specifications is a direct result of this oversight. None of the structuring and
presentation mechanisms which have proved so valuable in informal descriptions have been adopted
for formal specifications.

1.3.3 Hearsay-Ill Scheduling

The Hearsay-Ill system has been developed as a knowledge-based expert-writing system. It
provides a general framework for separating domain-specific competence knowledge (methods) from
performance knowledge (scheduling). The full power of the Hearsay-Ill system, in the form of a
structured blackboard and cooperating knowledge sources, is available for implementing scheduling
policies.

The state of the art with respect to such scheduling policies is quite primitive, so much
experimentation is required. For this reason, we designed Hearsay-Ill with extremely general
scheduling primitives, and with the ability to build and utilize arbitrary data structures to control
scheduling policies. In fact, we believe that advances in scheduling expertise will be directly
correlated with the sophistication of these data structures coordinating the individual pieces of
scheduling knowledge, rather than with the addition of any particular knowledge source.

Furthermore, we have noticed a serious deficiency in the control structure of current expert
systems for which Hearsay- Ill is ideally suited as a research tool. These systems are not able to alter

SPECIFICATION ACQUISITION FROM EXPERTS--SAFE

their mode of interaction in response to the capabilities of the user and/or the demands of the
particular task. Rather, the respective responsibilities and roles of the system and the user are
predetermined during the system design. This rigidity arises from the lack of separation of control
from competence within the expert system.

Finally, we have observed that current expert systems are extremely limited in their ability to use
measures" applied to Knowledge. The existing technology, as evidenced in Mycin and SRI's

inference nets. allows one-dimensional numerical credibilities to be combined. However. knowledge
can be (and is) quantized in many other ways in addition to its credibility, such as its utility,
importance, costs, and timeliness. Each of these quantized measures should affect the way in which
the knowledge is used. Such a multidimensional reasoning mechanism does not yet exist.

1.4 FUTURE WORK

Our research goals for the next few years are divided into three areas: one related directly to the
SAFE system. and one each to the Gist and Hearsay-Ill by-products.

1.4.1 SAFE

By providing a well-defined space of allowable specifications, the design of the Gist formal
specification language was the first step in codifying the four knowledge bases within the SAFE
system. The next step is to define in terms of our internal input language the allowable types of
informality (such as omitted operands and operations, ambiguous references, and unsequenced
operations). With these classes of informality clearly defined, we can identify and incorporate into the
system the appropriate additional knowledge that the four SAFE knowledge bases need to process
the full range of these informal constructs.

To prevent the slow buildup of performance knowledge from limiting our progress on handling
large specifications, we will adopt a policy of using manual intervention to guide the search
a=propriately. Gradually the emerging performance knowledge will replace this manual intervention.
It should be noted that our perception is that this early reliance on manual scheduling is not an
aberration, but rather a general paradigm of expert system creation based on the difficulty of
explicating the performance knowledge and its dependence upon the competence knowledge being
controlled.

In addition to these improvements in the system's robustness and predictability through
systematizing its competence and performance knowledge bases, its ability to understand an informal
specification can be enhanced by providing an extensive predefined domain model. This domain
model is central to the system's operation. It provides the domain-specific knowledge which
augments the built-in domain-independent knowledge to disambiguate the informal constructs. It
contains the type structure of the domain, the possible relationships between objects and restrictions
on those relationships, the actions of the domain including their operands and results, and the rules
of inference. In short, it contains all the declarative information necessary to describe a domain in
which the behavior defined by the specification is to occur.

Thus, the existence of an extensive, accurate domain model as a precursor to formalizing a
specification provides a strong semantic support for the disambiguation of that specification and

FUTURE WORK 7

suggests a mode of operation which capitalizes on this semantic support to increase the systems
utility. Naturally, this model can itself be built by SAFE from informal input through its ability to
dynamically acquire a domain model: but in this mode of operation the formalization of the domain
model will be completed before the formalization of the specification itself begins.

The pre exrstence of the domain model will provide a much stronger semantic base for the
disambiguation of the specification and will remove any reliance on the capability to dynamically
change the domain model.-one of the most difficult problems for SAFE (this is basically the
incremental compilation problem in which declarations change),

We will also require the pre-existence of the linguistic model, which will permit mapping from the
vocabulary and syntax of the natural language front end to tl . names used in the predefined formal
domain model.

The SAFE system currently makes the basic assumption that the specification being described is
correct, i.e., there exists at least one valid interpretation (formalized specification). It has no
mechanisms to deal with specifications that are really wrong (either because the user has not
foreseen some interaction, or because the design is incomplete), A small step has been taken in this
direction as part of our current effort to process specifications incrementally. We have given the
system the capability to delay forming an interpretation of some construct until further information is
provided. But this capability merely delays the decision making and doesn't address the issue of
having intended interpretations which are not well formed. The current strategy of rejecting such
interpretations must be softened so that analysis can proceed even when a specification violation is
detected. In particular, such a violation should not preclude the disambiguation of other portions of
the informal specification. This will be accomplished by annotating the interpretations with any well-
formedness rules they violate and using these annotations to form a relative evaluation of the
acceptability of alternative interpretations.

1.4.2 Manipulation and Readability of Formal Specifications

We would like to produce language forms and computer-based tools to enhance the readability and
understandability of formal specifications. Specifically, we plan to identify the understandability
mechanisms commonly used for partitioning informal descriptions (such as overviews and
summaries, elaborations and refinements, normal case descriptions, and alternative viewpoints). We
will also provide reading tools which utilize electronic windowing to focus on individual pieces of the
specification and navigate between them in a "story unfolding" manner. Within such a framework,
we will develop language forms and good practices for creating specifications through an
elaboration/refinement paradigm.

We would also like to study the use of both static and dynamic graphics to provide alternative
"redundant" viewpoints. We are particularly interested in developing the capability of restructuring
multiple-participant systems from a participant-oriented (control) viewpoint to an object-oriented
(data flow) viewpoint, and vice versa.

As part of our RADC effort, we will produce a tool for explicating implicit interactions among parts
of the formal specification. We would like to incorporate this capability into our specification-reading
tool.

8 SPECIFICATION ACQUISITION FROM EXPERTS--SAFE

Finally, the Gist language design is incomplete. It focuses on the logical, behavioral description of
systems. Two major areas, error handling and interface specification, have yet to be defined, These
facilities are common in programming languages but have not been adequately explored in the
context of formal specification languages. The appropriate representation- and implementation-
independent abstractions need to be identified as part of this design effort.

It is clear that both these issues complicate the system specification, making it more difficult to
understand. It is therefore important to design these language facilities within the context of the
elaboration/refinement paradigm and the specification-reading tool.

1.4.3 Hearsay-Ill Scheduling

We believe that Hearsay-Ill provides a particularly good framework for exploring scheduling
policies and mechanisms, and we would like to pursue this basic scientific question within the context
of the SAFE system and expert systems in general. In particular, we would like to identify, codify, and
study the scheduling policies being discussed today (such as subgoaling, focus of attention,
agendas, and resource-limited scheduling) and their use of data structures in the context of a fixed
set of competence knowledge in the SAFE system to determine (as metaknowledge) the
appropriateness, or lack thereof, of these policies and how they could usefully interact,

This will be accomplished by building generic versions of these scheduling policies, applying them
to portions of the SAFE system, and determining the advantages and disadvantages of each. Then
we will attempt to develop and test a technology for combining these policies to enhance the overall
performance of the SAFE system.

Hearsay-Ill is an ideal framework for studying the problem of dynamically shifting responsibilities
between a user and the system because it both separates aspects of the system and provides the
data-structuring and dynamic-knowledge-source-coordination mechanisms needed for necessary
run-time context-sensitive control decisions.

This issue will be addressed by devising a scheduler which, given a split of responsibilities between
a user and the system, structures a fixed set of competence knowledge to accomplish the system's
responsibilities in its interactions with the user. Such a scheduler will use metaknowledge to
determine the best way to employ the competence knowledge. A central research issue will be to
identify the possible methods of using competence knowledge so that this metaknowledge can be
systematized arid used by a general scheduling mechanism.

After such a general, externally directed split-responsibility scheduler is built, we will investigate the
feasibility of incorporating within the system the determination of an appropriate split of responsibility
between the user and the system by dynamically estimating the relative competence and response
speeds of itself and the user, the difficulty of the task, and its response time requirements.

Finally, the multidimensional measure problem will be addressed by attaching "measure vectors"
to knowledge and developing mechanisms for selecting knowledge to be applied based on its
measure vector and for combining measure vectors of antecedent knowledge elements to produce
the measure vector of the consequents.

9

2. PROGRAM VERIFICATION

Research Staff: Research Assistants: Support Staff:
Susan Gerhart David Taylor Lisa Moses
Raymond Bates Jeannette Wing
Rod Erickson
Stanley Lee
David Thompson
David Wile

2.1 PROBLEM BEING SOLVED

In its most restricted sense, program verification is the task of proving the consistency of a given
program with its given specifications (what is often called the "correctness" of the program). The
purpose of verification may be either (positively) to establish consistency for certification purposes or
(negatively) to discover inconsistency as a step in debugging.

In a broader sense, program verification is an analytic and synthetic tool for addressing a wider
range of software quality considerations than just the consistency of the final specification and final
program. The trend that has been developing in the last few years is to apply these techniques early
in the development process to objects that are more like statements of requirements and designs than
like programs. Indeed, particular verification methods can provide the basis for various software
development methods, e.g., the data abstraction or state transition models that will be discussed
shortly.

The term "verification" in this context applies to techniques involving mathematical proofs, as
opposed to testing. Although testing is a much older and far more widely practiced verification
method (and is usually quite effective in revealing many errors), it lacks sufficient theory to provide
any form of certification [221. Nor does testing integrate well into the early stages of software
development.

Thus, the problem being solved is two-fold: (1) the specific problem of finding and refining the
appropriate mathematical proof methods and (2) the more general problem of integrating these
methods with the software design and development processes.

A special aspect of the research is that these mathematical and programming methods should be
supported with mechanical tools which are, at the very least, capable of removing much of the burden
of tedium and error-proneness from the human users. Since our goal was not to develop a theorem
prover which would work completely automatically, the interface with the human directing the proof
was critically important. However, we see the main goal of verification research as the development
of the significant problem-related concepts, theories, and methods, without letting the underlying
technology become the driving force. The development over the past decade of mechanical (even
highly human-directed) theorem provers has been, and remains, a significant challenge to computing
theory, artificial intelligence, and software systems.

10 PROGRAM VERIFICATION

2.2 GOALS AND APPROACH

In 1979, based on several years' work, the Program Verification Project produced a usable
verification system, Affirm. In 1980, we experimented extensively with it, supported outside users,
and applied the system, jointly with the Internet Concepts Research group, to a major effort in
communication protocols.

2.2.1 Background

In the earlier years of Program Verification (PV) research (the late 1960's and early 1970's), the
primary objects of interest were programs, usually familiar mathematical ones such as Greatest
Common Divisor or simple sorting algorithms. The primary areas of study in programming
methodology at that time were control structures and programming languages. The only widely
known method for verification was the inductive assertion method [10] with its associated intellectual
challenge of devising the proper inductive assertions for loops, usually after the program's
aevelopment. Following this paradigm, the system XIVUS [19] was produced by the PV project.

However, in the middle 1970's, computer science interests switched to data structures (influenced
strongly by Guttag [23] and Alphard [56]) and methodologies emphasizing specifications. The PV
project at that time became heavily involved with this new interest in data structures and developed a
predecessor to Affirm known as DTVS (Data Type Verification System) [42]. The data structure
approach seemed both promising enough and sufficiently different from other verification projects to
warrant in-depth study. Thus Affirm evolved with both the "standard" program verification methods
using the inductive assertion method and with newer, more data-structure-oriented methods. The
present state of Affirm reflects the bias toward data structure specification and verification
techniques, which have since evolved into even more general methods.

The current approach can be characterized as emphasizing the development of specifications
(usually executable, but not meant to replace programs) in several levels and proving the necessary
correctness properties at each level. The levels need not progress all the way down to programs,
thus permitting greater flexibility of specification and verification.

The rest of the report will treat three specific areas: (1) data structuring methodology, (2)
specification techniques, and (3) Affirm system development and experience. Further details on
Affirm appear in [12, 431 and the PV section of [53].

2.2.2 Data Structuring Methodology

Following Guttag [24, 25, 26, 27, 28] quite literally, Affirm treats data types as abstract
mathematical concepts defined by a set of axioms. A data type is defined by its primitive constructors
which yield all data'objects of the type. Other nonprimitive operations into and out of the type of
interest (called modifiers and selectors, respectively) are defined by axioms for each constructor.
Thus there is a systematic procedure for specifying a data type: (1) Identify the constructors; (2)
Axiomatize the operations of interest in terms of the constructors.

As in mathematics, axioms are the nucleus of a theory of the concepts specified by the axioms.
The most basic theorems are proved by induction on the constructors, a technique called structural

GOALS AND APPROACH 11

or data type induction. The typical proof of a problem-domain theorem then uses these derived
properties of the subsidiary data types rather than going directly back to the axioms.

Some of the intriguing questions of the research on abstract data types were the appearance of
specific types, their complexity, differences, and similarities; and the difficulty of creating them.

The actual use of the axioms in Affirm goes beyond just the specification of data type operators.
The axioms look like equations but are really treated as rewrite rules in the theorem prover: whenever
the pattern on the left-hand side of an axiom matches an expression, that expression is replaced by
the right-hand side. Of course, this requires some restrictions on the form of the equations to prevent
infinite or nonunique rewriting, but it turns out that these conditions can be checked to a large extent
[44). Rewrite rules permit a straightforward reductive brand of theorem proving.

Another interesting question in the early stages of the research was how much harder it might be to
create and understand the axioms because of this additional use for theorem proving.

Of course there is more to abstract data types than just the omission of unnecessary detail in their
presentation. They must be implementable in existing programming languages and in levels of
abstraction. Affirm currently has no built-in methods for relating these levels, but the notion of an
abstraction or rep function [29, 56] is easily expressed and used. In this approach, one states a
mapping from concrete to abstract types and the appropriate correspondence between what the
levels are supposed to do.

2.2.3 Specification

There is no single universal specification method. Nor is there agreement on the degree of
formality desirable in specification methods or individual specifications. The basic research questions
for any method are determining its range of applicability and ironing out as many difficulties as
possible in its underlying theory and supporting tools.

Affirm's provisions for axioms and definitions constitute a kind of specification language.
Specifications may be stated in terms of abstract functions, procedure headers with preconditions
and postconditions, or abstract programs. It was a pleasant surprise to find that our algebraic
axiomatic method works on far more than just abstract data types. In fact, it is a fairly general
approach to specifications. In the axiomatic method, the state (of the program, or system, or
whatever is being specified) is usually implicit. That is, the specifier does not say "here's what the
state looks like," but instead loosely describes its components. The state transition method is a very
popular way of specifying a large class of objects. The basic idea is to show how the state
components change with respect to whatever inputs, or commands, or events are being modeled. It
turns out to be easy to express this in Affirm's axiomatic framework. Suppose the state components
are {si} and the events or inputs are {E,}. One simply gives the set of axioms

si(E.(s, a), b) = c

where s represents the state, b designates the arguments to the selector, a shows the arguments to
the events, and c is the change to s. effected by E,. Note that Ei is treated as a constructor of the data
type and si is treated as a selector. For example, supposing the history of events at some point is s,

12 PROGRAM VERIFICATION

Sent(Send(s,m)) = if isEmpty(Pending(s))
then Sent(s) Add m
else Sent(s)

says that Sent, a queue of messages, changes in the new state Send(s,m) with the addition of a
message m only when there are no Pending messages in the current state. Another way of
expressing the same thing is with an eiit state constructor

const(vi IVn)

where the {v.) are variables of the same types as {si} and with axioms
Ei(const(v 1 Vn), . const(vl',. ,vn')

Iwhere the v.' are expressions giving the new state components. The latter method requires fewer, but
far more complex axioms. In the former method, there are usually a large number of "no change"
axioms which clutter the presentation of the data type specification.

As with data types, there must be ways to relate levels of state transition specifications. The
approach is similar to that of data types using rep functions between states and proving that the
axioms of the more abstract type are actually theorems of the more concrete level. At the level of
programs, the Pascal-like language incorporated in Affirm does not support concurrency, but in
many cases the lowest level processes can be represented as procedures viewed as running
independently.

The state transition method expressed in Affirm's data types was the approach used in specifying
communication protocols. Protocols may be modeled as distributed systems. The interesting events
originate from user actions such as Sending a message, from service process steps such as Receive
or Transmit along a channel or to a user, and spontaneous faults of the channels such as Losing a
packet or an acknowledgment. The state of such a system consists of the data structures of the
separate processes, the sequences of packets in the channels, and the histories of messages sent
and received. Axioms specify, for example, how a channel between a Sender and a Receiver process
changes under the pertinent events of sending and receiving packets and of spontaneous loss or
reordering of packets in the channel. The goal was simply to discover what range of protocols and
properties could be specified in this way and how these would be verified.

Thus Affirm affords a range of specification methods, the state transition method having been
explored over the past year.

2.2.4 System

Affirm's underlying program processing component is the traditional verification condition
generator for a Pascal-like language [37, 38].

The theorem prover is, in part, a descendant of an earlier prover designed by Bledsoe and Good
[5, 19]. Besides using the rewrite rules of data types, the usual operations of propositional logic are

built-in. The result is that the user creates proofs much like those in mathematics, using case analysis,
lemmas, and various forward and backward kinds of reasoning. However, using the Affirm theorem
prover is an arduous task, especially since the theorems one attempts to prove are typically not
correct, but simply conjectures which require refinement to the status of theorems. The best-laid
plans for proofs often go astray and the user is frequently swamped by the size of intermediate
propositions or the many dangling paths taken through a proof.

GOALS AND APPROACH 13

For these reasons--the very nature of the mechanical theorem-proving task, as well as some of
Affirm's current weaknesses--heavy emphasis has been placed on the user interface. The
programming of good user interfaces is not well understood, nor is there a consensus on what makes
a good one (although poor interface features are readily recognized). Our experience is that a good
user interface has two separate aspects: concrete and abstract. Features of a concrete user interface
include command syntax, detection and provision for correction of command errors, spelling
correction of command parts, profile switches, display control and quality, and interaction with the
host operating system. The abstract user interface is the model of the system provided to the user,
and, conversely, of the user to the system.

Affirm has a wealth of concrete features, mainly implemented from Interlisp. In each case, the
introduction of the feature required considerable use and modification before it reached
effectiveness; user interface features usually are not designed right the first time. This requirement
for sustained usage and adaptation is probably a major reason for the poor quality of many user
interfaces which are added on at the end of development without time to mature. Our approach has
been to build these in gradually and experimentally.

The Affirm approach to abstract user interfaces is the abstract machine structure upon whioh the
Reference Manual [50] is based. These include the Specification and Theorem Proving machines,
which are accessed via the Executive, and which use the Formula Input/Output, Logic, and Rewriting
Rule machines. Although the internal structure of Affirm is not actually that well-structured in terms
of these machines, the documentation is carefully organized to smooth out the inconsistencies in an
attempt to give the user a coherent model of the system. Thus in our conception of user interface
quality, the documentation plays a major role. Ours also includes considerable analysis of experience
[1,16. 17], dedicated to transferring that experience to less experienced users. The intended effect
is that users who follow the guidelines of the documentation will develop styles consistent with those
we have painfully evolved over the past few years.

One of the most important facets of Affirm's abstract user interface is the proof forest [9] by which
proofs are developed and presented. The many functions on this proof forest give the user the feel of
working on a data structure representing the way proofs are conceptualized, that is, with an overall
tree structure but linked via levels of lemmas.

2.3 SCIENTIFIC PROGRESS

2.3.1 Data Structuring Methodology

The question of the appearance of abstract data types is quite well answered. The axioms follow
several common patterns of recursion which also interact well with the theorem prover, although it is
frequently necessary to side-step the rewrite-rule formulation to express other kinds of recursion and
to package definitions which are intended to be invoked only at certain points in the proof. Indeed the
many specifications of many data types are sufficiently standardized that Affirm provides them in a
Type Library which is treated as an integral part of the system.

There seems to be no degradation in intelligibility of the axioms due to their role in theorem
proving. Instead, the ad hoc quality of such axioms is removed by their entry into Affirm and their
readability is improved by such simple mechanisms as pretty-printing and use of various fonts
automatically provided by the Affirm user interface.

14 PROGRAM VERIFICATION

The importance of systematically developing the theory of the data type has been empirically
shown again and again in experiments starting from just the axioms. If a program or another

specification uses two operations of the type, there is a high likelihood that a lemma will be required
that relates the two operations. The theory of the data type is this collection of properties which follow
nontrivially from the axioms or from previously proved properties. Furthermore, the practical
importance of systematically developing these theories before the type is used is two.fold: (1)
developing the theory past the axiomatic level provides a good check that the data type operations as
specified capture the intent of the specifier and perform well in theorem-proving and (2) developing
the theory piecemeal is extremely error-prone because it requires the user to switch contexts
between the problem of interest and that of the auxiliary data structures being used. Although not all
types in the Type Library have fully developed theories, we have several good examples of what such
theories look like. Similarly, the rep functions mapping between levels of types follow several
common patterns and have their own associated theories as well (18].

We consider data abstraction to be a well-understood area, although the elaboration of specific
data types and their theories remains to be done.

2.3.2 Specification

We now have considerable experience with the specification of a wide range of tasks:

' security kernels [13, 39, 40],
" protocols [2, 3, 47, 48, 51],
* distributed file updating [11, 32],
* numerical analysis bases (14, 311,
* and other programs and data types [15, 35, 55].

An interesting specification experiment is described by Lee [32]. We were given a description of an
algorithm for controlling versions of files in a network [46], expressed in terms of graphs. It was first
necessary to develop the graph data type and its theory in order to state the main theorem. However,
attempts to prove what was claimed to be a theorem failed, leading to a counter-example which
revealed a flaw in the algorithm. In this case, not even an algorithm was directly being verified, only
the properties of a graph representation of a network maintained by the algorithm. This provides an
excellent example of verification applicability and effectiveness very early in the design process.

With respect to communication protocol specification and verification, considerable progress was
made using the state transition approach. Safety properties (that messages not be lost or
misdelivered) were the primary focus of attention, but some advances were made on liveness
properties (being able to respond and to do useful work). The appropriate structuring of specificatiorn
levels and mappings between them was the most difficult problem. Writing axioms for the state
transition machines in .a single level is more straightforward. A comprehensive paper describing the
techniques has been submitted for publication [51]. The section of this Annual Report describing the
Internetwork Concepts Research project (7) discusses the specific protocol experiments in more
depth. Schwabe [48] suggests a specification language for distributed systems, such as protocols,

SCIENTIFIC PROGRESS 15

2.3.3 System

Affirm was developed as a research tool to explore the theory and methodology associated with

abstract data structures and, secondarily, with a Pascal-like programming language A considerable
amount of insight is gained from a tool which works well enough that its designers can perform some
small-scale experiments, not necessarily to completion. However. a much more powerful. robust. and
finely engineered tool is required for users other than designers, on medium- or large-scale
experiments, as far through the experiment as resources permit.

In 1979 and 1980, Affirm was brought into the latter category. It was "released" over the
ARPANET in December 1979, backed up by a five-volume Reference Library [49] which was
completely revised recently [52]. Through 1980, several users became familiar with the system and
some pursued what we would consider medium-sized experiments, primarily in the protocol area. A
notable nonprotocol area is the toy security kernel [39] which led to a comparison of an Affirm proof
with an HDM proof (40]. The conclusion was that the two systems were complementary, HDM (the
SRI methodology) proving various data flow properties and Affirm proving several needed invariants.
Another comparative study in the security area is [71. General surveys of existing verification systems
have appeared in [8, 36, 41].

Since few research tools reach even this low level of use and experimentation, it is worth trying to

summarize some of the experience with it. Affirm is unique among verification systems with its
orientation toward abstract data types. In comparison with other systems it is weaker than the
programming-language-based methodology of GYPSY [20], than Boyer-Moore's [6] elegant and
powerful theorem-proving techniques, than HDM [33] and [4] and INA JO [34] with respect to explicit
methodology for supporting levels, and Oppen and Nelson's [45] specialized theorem-proving
techniques. However, its design has taken into account these weaknesses (most of which are more
relative than absolute) and attempted to overcome them with a user interface which makes the

system, overall, easy to use.

Another strong point of the system is its emphasis on re-usability of data types and theories as
supported by a Type Library. We agree strongly with the forceful arguments of Good [21] that "the
problem with verification is computing science": the dominant cost in verification is in developing the
deductive theories of the problem domains.

Our productivity has improved considerably over the past year, based on improvements primarily in
the user interface, but the main barrier is still resources. Few verification experiments are completed
when the needed cycles are only available in off-hours.

2.4 IMPACT

2.4.1 Data Structuring Methodology

Affirm has taken a piece of computer science theory and, in five years, transferred technology

embedding it to a variety of application areas. The good fit between theory and technology has given
impetus to the prospects for a sound and strong programming methodology based on abstract data

types [30]. The tie-in with transition systems has expanded the utility of the basic axiomatic
formalism, providing a uniform specification language for far more than just data types.

16 PROGRAM VERIFICATION

Other areas of impact are in the languages, especially Euciid and Ada. developed concurrently with
the theory and technology.

2.4.2 Specification

The combination of abstract data types, state transition methods, and communication protocols is
unique. The long-popular state transition methods have gained some mechanical support that may
be applicable in a variety of application areas.

It is important to emphasize that the protocol work of the past year has been done jointly with the
Internet group at ISI. This has achieved some technology transfer from verification to an application
area and methodology transfer in both directions.

2.4.3 System

Affirm is one of the best known verification systems and the only one to carry through the data
abstraction methodology and to emphasize user interfaces. Although verification technology has
been slow in developing, it has now reached the stage where significant experiments can be
performed. There are even some government contracts that stipulate verification. The specific
impetus of the recent achievement of operational, even usable, verification systems is to make
verification a real possibility in the next few years.

2.5 FUTURE WORK

Affirm is a stable, well-documented research tool. Its future use is anticipated in a variety of
applications, including the protocol area explored this past year. Of course, numerous improvements
in system, theory, and methodology are possible and will appear with its further use. Examples are a
front-end to help generate the particular kind of specifications occurring in state transition models, a
stronger consistency check on data types, implementation of one or more interlevel mapping
methodologies, integration of a more powerful method for managing proof development histories
[54]. and incorporation of other theorem proving strategies such as cooperating decision procedures
[45].

The particular focus of the project will enlarge the scope of programming methodology goals to
adaptable software components. These are pieces of packaged software meant to become part of an
assembly, perhaps with some modification. We hope to expand the role of previously developed
verification and specification tools from their certification and explanation. which are clearly required
for widely usable software, to include analytic and synthetic tools in the identification, packaging, and
assembly of these components.

REFERENCES

1. Bates, R., and S.L. Gerhart, eds., Affirm Annotated Transcripts, 1981.

2. Berthomieu, B., Proving Progress Properties of Communication Protocols in Affirm,
USC/Information Sciences Institute, Program Verification Project, Affirm Memo 35, September
1980.

17

3. Berthomieu, B., Selective Repeat Protocol: Axiomatization and Proofs, USC/Information
Sciences Institute, Program Verification Project, Affirm Memo 36, September 1980.

4. Birman, A., and W. H. Joyner, "A problem-reduction approach to proving simulation between
programs," IEEE Transactions on Software Engineering 2, (2), 1976, 87-96.

5. Bledsoe, W. W., and P. Bruell, "A man-machine theorem-proving system," Artificial
Intelligence 5, (1), 1974, 51-72.

6. Boyer, R. S., and J S. Moore, A Theorem-Prover for Recursive Functions: A User's Manual, SRI
International, 1979.

7. Craigen, D., and B. Pase, Formal Verification of Programs: Report # 3, Formal Specifications and
Theorem Provers, I. P. Sharp Associates, Technical Report TR-81-5606-3,1980.

8. Craigen, D., and W. Pase, A Preliminary Overview of Automatic Verification Systems, I. P. Sharp
Associates, Technical Report IPSA TR 5605-80-1, 1980.

9. Erickson, R. W, and D. R. Musser, "The Affirm theorem prover: Proof forests and management
of large proofs," in W. Bibel and R. Kowalski (eds.), Lecture Notes on Computer Science.
Volume 87: Fifth Conference on Automated Deduction, Springer-Verlag, 1980. (Also
USC/Information Sciences Institute Affirm Memo 13, April, 1980.)

10. Floyd. R. W., "Assigning meanings to programs." in J. T. Schwartz (ed.). Proceedings of
Symposia in Applied Mathematics, pp. 19-32, American Mathematical Society, 1967.

11 Gerhart, S L.. and D. S. Wile, "Preliminary report on the Delta experiment: Specification and
verification of a multiple-user file updating module," in Proceedings of the Conference on
Specification of Reliable Software, pp. 198-211. IEEE Computer Society, April 1979.

12 Gerhart, S. L., et al.. "An overview of Affirm: A specification and verification system," in
Proceedings IF/P 80, pp. 343-348, Australia, October 1980.

13. Gerhart, S. L., Experience with the MITRE Toy Security Kernel, USC/Information Sciences
Institute, Program Verification Project, Affirm Memo 2, January 1980.

14. Gerhart, S. L., "Fundamental concepts of program verification," in Proceedings of American
Society of Mechanical Engineers, International Computer Technology Conference, San
Francisco, Calif., August 1980. (Also USC/Information Sciences Institute Affirm Memo 15.)

15. Gerhart, S. L., A Short Blurb on Program Specification Featuring a New Example,
USC/Information Sciences Institute, Program Verification Project, Affirm Memo 34, September
1980.

16. Lee, S.. and S. L. Gerhart, eds., Affirm User's Guide, 1981.

17. Gerhart. S. L., ed., Affirm Type Library, 1981.

18. Gerhart. S. L., Josephus Circles: An Exercise in Data Structuring, USC/Information Sciences
Institute. Program Verification Project, Affirm Memo 37, June 1981.

18 PROGRAM VERIFICATION

19 Good, D. I., R. L. London, and W. W. Bledsoe, "An interactive program verification system," IEEE
Transactions On Software Engineering SE-1, (1), 1975, 59-67.

20. Good. D. I.. R. M. Cohen, and J. Keeton-Williams, "Principles of proving concurrent programs in

GYPSY," in Proceedings of 6th ACM Symposium on Principles of Programming Languages.
pp. 42-52. ACM SIGPLAN, 1979.

21. Good. D., "The problem with program verification is computing science," Software Engineering
Notes 5, (3). July 1980.

22. Goodenough, J. B., and S. L. Gerhart, "Toward a theory of test data selection," IEEE

Transactions on Software Engineering SE-1, (2), June 1975, 195-207. (Also appeared in 19-7
International Conferenc g Reliable Software.)

23. Guttag, J. V., The Specification and Application to Programming of Abstract Data Types,

Ph.D. thesis, University of Toronto, Department of Computer Science, October 1975.

24. Guttag, J. V., "Abstract data types and the development of data structures," CACM 20, June
1977, 397-404.

25. Guttag, J. V., E. Horowitz, and D. R. Musser, "Abstract data types and software validation,"

CACM 21, December 1978,1048-1064. (Also USC/Information Sciences Institute RR-76-48,
August 1976.)

26. Guttag, J. V., and J. J. Horning, "The algebraic specification of abstract data types," Acta
Informatica 10, 1978, 27-52.

27. Guttag, J. V., E. Horowitz, and D. R. Musser, "The design of data type specifications," in
R. T. Yeh (ed.), Current Trends in Programming Methodology, pp. 60-79, Prentice-Hall, 1978.
(An expanded version of a paper which appeared in Proceedings of the Second International
Conference on Software Engineering, October 1976.)

28. Guttag, J. V., "Notes on type abstraction," IEEE Transactions on Software Engineering SE-6, (1),

January 1980,13-23.

29. Hoare, C. A. R., "Proof of correctness of data representations," Acta Informatica 1, (4), 1972,
271-281.

30. Jones, C. L., Software Development: A Rigorous Approach, Prentice-Hall, 1980.

31. Lee, S., A Numerical Analysis Program Proof in Affirm, USC/Information Sciences Institute,
Program Verification Project, Affirm Memo 31, August 1980.

32. Lee, S., R. W. Erickson, and S. L. Gerhart, Finding a Design Error in a Distributed System: A Case
Study, USC/Information Sciences Institute, Program Verification Project, Affirm Memo 40, 1981.

(To appear at IEEE Computer Society Symposium on Reliability in Distributed Software and

Database Systems, Pittsburgh, July 1981.)

33. Levitt, K., B. Silverberg, and L. Robinson, The HDM Handbook, SRI International, Computer

Science Laboratory, 1980. (Three volumes.)

~19

34. Locasso, R., J. Scheid, D. V. Schorre, and P. Eggert, The Ina Jo Specification Language
Reference Manual, System Development Corporation, Technical Report TM-(L)-6021/001/00,
June 1980.

35. Loeckx, J.. Proving Properties of Algorithmic Specifications of Abstract Data Types in Affirm,
USC/Information Sciences Institute, Program Verification Project, Affirm Memo 29, July 1980.

36. Lomet, D., et al, IBM task force on provably secure operating systems. 1980. Unpublished.

37. London, R. L., "Program verification," in P. Wegner (ed.), Research Directions In Software
Technology, MIT Press, 1979.

38. Luckham, D. C., "Program verification and verification -oriented programming," in Proceedings
of the IFIP Congress 77, IFIP, 1977.

39. Millen, J. K., Operating System Security Verification, The MITRE Corporation, Technical
Report M79-223, September 1979.

40. Millen, J., and D. L. Drake, An Experiment with Affirm and HDM, The MITRE Corporation,
Technical. Report, December 1980.

41. Millen, J. K., M. H. Cheheyl, M. Gasser, and G. A. Huff, Secure System Specification and
Verification: Survey of Methodologies, The MITRE Corporation, Technizal Report MTR-3904,
February 1980.

42. Musser, D. R., "A data type verification system based on rewrite rules," in Proceedings of the
Sixth Texas Conference on Computing Systems, pp. 1A22-1A31, Austin, Texas, November 1977.

43. Musser, D. R., "Abstract data type specification in the Affirm system," IEEE Transactions on
Software Engineering SE-6, (1), January 1980, 24-32.

44. Musser, D. R., "On proving inductive properties of abstract data types," in Proceedings of the
Seventh ACM Symposium on Principles of Programming Languages, ACM SIGPLAN, 1980.

45. Nelson, G., and D. C. Oppen, "Simplification by cooperating decision procedures," ACM
Transactions on Programming Languages and Systems 1, (2), October 1979.

46. Parker, D. S., et al., "Detection of mutual inconsistency in distributed systems," in Proceedings
of the Fifth Berkeley Workshop on Distributed Data Management and Computer Networks,
pp. 172-184, University of California, Lawrence Berkeley Laboratory, February 1981.

47. Schwabe, D., Formal Specification and Verification of a Connection-Establishment Protocol,
USC/Information Sciences Institute, !Sl/RR-81-91, April 1981.

48. Schwabe, D., Formal Techniques for Specification and Verification of Protocols, Ph.D. thesis,
University of California, Los Angeles, Computer Science Department, March 1981. (Also UCLA
Technical Report ENG 8209.)

49. Thompson, D. H., and S. L. Gerhart, eds., The Affirm Reference Library, USC/Information
Sciences Institute, 1979. (Five volumes: Reference Manual, User's Guide, Type Library,
Annotated Transcripts, and Collected Papers; 450 pages.)

20 PROGRAM VERIFICATION

50. Thompson, D. H., and R. W. Erickson, eds., Affirm Reference Manual, USC/Information
Sciences Institute, 1981.

51. Thompson, D. H., C. A. Sunshine, R. W. Erickson, S. L. Gerhart, and D. Schwabe, Specification
and Verification of Communication Protocols in Affirm using State Transition Models,
USC/Information Sciences Institute, ISI/RR-81-88, March 1981. (Also submitted for
publication.)

52. Thompson, D. H., S. L. Gerhart, R. W. Erickson, S. Lee, and R. L. Bates, eds., The Affirm
Reference Library, USC/Information Sciences Institute, 1981. (Five volumes: Reference Manual,
User's Guide, Type Library, Annotated Transcripts, and Collected Papers; 450 pages.)

53. ISI Research Staff, 1979 Annual Technical Report, USC/Information Sciences Institute, ISI/SR-
80-17, 1980.

54. Wile, D. S., POPART: Producer of parsers and related tools, 1981. (USC/Information Sciences
Institute Technical Report, in preparation.)

55. Wing, J. M., Experience with Two Examples: A Household Budget and Graphs, USC/Information
Sciences Institute, Program Verification Project, Affirm Memo 30, August 1980.

56. Wulf, W. A., R. L. London, and M. Shaw, "An introduction to the construction and verification of
Alphard programs," IEEE Transactions on Software. Engineering SE-2, (4), December 1976,
253-265.

21

3. AUTOPSY

Research Staff: Research Assistants: Support Staff:
Stephen D. Crocker Jeffrey V. Cook Joyce K. Reynolds
Richard Gillmann Craig Taylor Debby Shishkowsky
David MacOueen
David F. Martin
Hanan Samet

3.1 PROBLEM BEING SOLVED

The Autopsy project has been investigating translation of programs from old languages into new
languages. While it is clear from both theory and practice that translation between arbitrary
languages is not likely to succeed, the less ambitious goal of translation between "compatible"
languages may be quite reasonable.

We anticipate at least two possible benefits:

1. We have developed a specific technology for translation. While the tools we have
developed are neither complete nor practical enough for production work, they may
provide a blueprint for development of practical translation tools.

2. In the event that programs are planned to be written in one language and translated into a
different language at a later time, our tools make it possible to work out a translation
strategy and thereby uncover any difficulty. Such an exercise would provide guidance on
what subset of the existing language is most compatible with the new language.

3.2 GOALS AND APPROACH

A completely automatic program translation system, though ideal, is not possible with present
programming languages.

- A particular piece of code may be timing dependent, and this timing dependency may not
be evident from the text of the code.

- A particular piece of code may be dependent on internal machine language interfaces
that are not evident from the code.

- To facilitate maintenance by humans, a piece of code may observe coding conventions
that are not themselves evident from the code.

, Some constructs in the old language may not have translations into the new language.

Despite these limitations, a translation system nonetheless must automate as much as possible of
the translation; otherwise its use would not be worth the trouble.

Our approach has been to develop an interactive system that contains an array of tools for the user
to deploy in translation. So far we have focused on the following set of tools.

Direct Translator This tool carries out automatic translation on the bulk of the old program. When it
encounters untranslatable constructs, it must encapsulate them so they may be

22 AUTOPSY

treated later by either the user or other tools. The direct translator should also be
designed to work on portions of programs. so it may be called by the user after

preliminary or intermediate modification of the old program has been carried out

by the user.

Editor At the other end of the spectrum, the user must have recourse to make any
modification to either the old code, the new code, or any intermediate
representation. Complete recording of all editing commands is necessary to
provide a history of how the new program was derived from the old program.

Verifier Verification technology is mature enough to provide some limited but useful tools.
If the user substitutes new code for old by hand, but does so in a fairly mechanical
way that preserves the basic algorithm, it is possible to mechanically verify the
equivalence of the two programs. Samet's work [6] provides the basis for this

tool.

Pattern-Directed Transformer
The user would direct the application of certain transforms to all places that meet

the criteria for application of the transforms. If the user may write his own
transforms, this tool is essentially a programmable editor. If the set of transforms
is restricted to an "approved" set, this tool becomes a user-directed translation
system.

These tools must exist within a coherent framework, and we have designed an interactive monitor

to govern access and use of these tools. Since the user has control over the tools and may guide the
translation along any desired path--including arbitrary modification of the program by hand with the

editor!--one function of the monitor is to record the history of the translation. In addition, the monitor
can aid the user by providing facilities for "undoing" a part of the translation or for reapplying a

sequence of tools in a uniform way.

Central to the design of the tools is the Autopsy intermediate language (IL). The direct translator
translates into and out of IL representations, one of the editors is designed to edit IL representations,
and the verifier verifies equivalence between IL programs. A synopsis of the Autopsy IL is given
below in section 3.4.

To focus this project, we concentrated on translation between a specific pair of languages, CMS-
2M [5] and Ada [4].

3.3 SCIENTIFIC PROGRESS

3.3.1 System Design

The direct translator uses syntax-directed translation techniques to perform an automatic
translation in four phases. If untranslatable language constructs occur, they are noted and

encapsulated for later attention from the user. The four phases of the direct translator are (1) old

source to parse tree, (2) parse tree to intermediate language, (3) intermediate language to parse tree

in the new language, and (4) prettyprinting the parse tree into source code in the new language. An

SCIENTIFIC PROGRESS 23

explicit intermediate language is used to give UNCOL-style expandability [7], i.e., if a new source
language is added, we will be able to translate it to any supported new language. and vice versa.

The verification tool currently under construction compares two programs in the intermediate
language representation to see if they carry out the same computation [6]. It is intended that this tool
be used after changes are made by hand using an editor.

The present system has been tailored for translation of CMS-2M [5] programs into Ada [4].
Extensions to translate from or to "similar" languages would be relatively easy.

3.3.2 Status

In FY79, the intermediate language was designed and the direct translator was built, tested, and
measured. Details of the direct translator are given in [2, 31.

During FY80, the interactive monitor (Quincy) was developed, editors and the direct translator were
installed as tools under the monitor, and a large part of the verification system was built.

The monitor "Quincy" records all transactions and provides an "undo/redo" capabiltiy. When any
session is complete, the monitor records the list of transactions as part of the information stored
about the program being translated. This audit trail is replayable and forms an accurate basis for
understanding the exact relationship between the old and new programs.

The monitor maintains an audit trail of user commands, i.e., a file listing all the commands entered
by the user. The user may undo or redo any proviously executed command by referring to its
command number. If desired, the audit trail may be replayed and the commands that compose it will
be redone in order.

The user is given access to two kinds of tools: all the regular programs available at the executive
level, such as editors, and a set of special translation tools which are Interlisp functions.

3.4 THE AUTOPSY INTERMEDIATE LANGUAGE

An intermediate language for translation is different from an intermediate language for compilation.
A compilation intermediate language throws away comments, does not provide constructs for
untranslatable usages or errors, can use a stack-structured symbol table, and does not have to deal
with differing scope rules. Our translation IL makes provision for these things and in addition
maintains a tree-structured symbol table because the entire tree is kept during the translation
process. The tree-structured symbol table is provided by distributing the symbol table over the
program tree.

Our IL differs in several ways from a programming language. The syntactic "sugar" provided by
programming languages has been stripped away. Scope rules, binding rules for subprogram
arguments, and type conversion are explicit in the IL, whereas they would ordinarily be implicit in a
programming language. Our IL provides a format for communication between passes of the system.
It is intended to be flexible in order to provide for future expansion to cover more of the CMS.2M
language and other languages that might be incorporated into the system.

24 AUTOPSY

The Autopsy intermediate language is more than the abstract syntax tree. It is similar in intent to
TCOLAda [1), but with an S-expression syntax that does not require numbered statement labels. The
IL covers only the source level of CMS-2M; machine dependent features, e.g., microcode procedures,
are not considered.

In the following description of the concrete syntax of the IL, square brackets ([]) indicate optional
constructs. Three dots (...) indicate optional repeats of the last construct mentioned. The solidus (/)
indicates a choice among alternates. The \ and - characters are used as break characters within
names. Upper case words are literals. Lower case words are place holders for other IL constructs or
terminal values. The IL definition does not restrict the nesting of IL constructs.

3.4.1 High-Leiel Constructs

(COMPILE unit ...)
(MODULE name internal-name [body])
(FUNCTION name internal-name type

[((name internal-name type IN/OUT/INOUT VALUE/REFERENCE) ...

[body])
(PROCEDURE name internal-name

[((name internal-name type IN/OUT/INOUT VALUE/REFERENCE) ...

[body])
(OPEN\SCOPE [(RESTRICTS list)] [(EXPORTS list)] body)
(CLOSEO\SCOPE ((IMPORTS list)] [(EXPORTS list)] body)

Unlike programming languages, scopes must be declared explicitly in the IL. MODULE,
FUNCTION, and PROCEDURE provide naming and argument passing without defining a scope
boundary. That must be done explicitly with OPEN\SCOPE or CLOSED\SCOPE. Each time a new
name is declared, a unique internal name corresponding to it is provided, The internal name is used
in all subsequent references. This avoids name conflicts deriving from the differing scope rules of
CMS-2M and Ada, and provides explicit typing for all names.

Arguments to subprograms must explicitly identify access restrictions and the method by which
arguments are to be passed. MODULEs, FUNCTIONs, and PROCEDUREs without bodies are used for
mutual recursion so that their names may be declared before their use.

3.4.2 Declarations and Types

(DECLARE name internal-name type [init])
(TYPE name internal-name type)

(CONSTANT type)
(INTEGER (RANGE min max))
(FLOAT (PRECISION p) [(RANGE min max)])
(FIXED\POINT (DELTA d) [(RANGE min max)])
(BOOLEAN)
(CHARACTER)
(ARRAY ((minl maxl) ...) OF type)
(RECORD ((FIELD name type [preset])/(CASE etc.)/(COMMENT etc.) ...

(POINTER type)
(FUNCTION arglist type)

THE AUTOPSY INTERMEDIATE LANGUAGE 25

(PROCEDURE arglist)
(MODULE)
(LABEL)

All variables and all types must be declared explicitly before they are used. CONSTANT is provided
for typing of compile time constants. Record fields do not need unique internal names because they
are always qualified by the record name.

3.4.3 Arithmetic, Relational, and Boolean Operators

The standard arithmetic operators are provided. ADD, SUBTRACT, MULTIPLY, and DIVIDE require
both their arguments to be of the same type. The arguments to POWER may be of different types.
Type conversion is done explicitly using CONVERT\TYPE. Variable references use internal names.
The six standard relational operators are provided. Arguments must be of the same type. AND, OR,
XOR and NOT are provided. They always evaluate both of their arguments. The short circuited or
"jumping" versions of AND and OR are also provided by JAND and JOR. These evaluate their second
argument only when necessary.

3.4.4 Structure Access

(SUBSCRIPT array (subl sub2 ...
(SUBFIELD record field)

These forms are used to reference array and record elements.

3.4.5 Statements

(STATEMENTS stmtl stmt2 ...
(ASSIGN target source)
(LABEL name internal-name)
(GOTO target)
(IF argi THEN arg2 [ELSE arg3])
(CASE arg ((valuel bodyl) (value2 body2) ...) [(ELSE default-body)])
(FOR var FROM expr TO expr BY expr [DECREASING] [body])
(WHILE expr [body])
(UNTIL expr [body])
(CALL subr [((expr [IN/OUT/INOUT] [VALUE/REFERENCE]) ...
(RETURN [value])

The above set of statement forms is provided. STATEMENTS is used to group a sequence of
statements.

3.4.6 Miscellaneous Constructs

(COMMENT string)
(ASSEMBLY\LANGUAGE string)
(UNTRANSLATABLE\CONSTRUCT anything)
(SYNTAX\ERROR)

2AUTOPSY

COMMENT is used to represent source language comments, both embedded and statement level.
ASSEMBLY\LANGUAGE is used for CMS.2M direct code. UNTRANSLATABLE\CONSTRUCT
provides a holder for other forms that cannot be directly translated, e.g., microcode procedures.
SYNTAX\ERROR is used in conjunction with the error-recovery procedures of the parser to enable
the system to operate even in the presence of syntax errors, and to minimize the effect of such errors
on the translated output.

The IL could be used to translate other languages such as TACPOL or JOVIAL., There might be
some problems with static allocation of variables versus stack allocation, but these should not be
serious. Expansion to cover more complex languages such as PL/I, Ada, or ALGOL 68 would require
a number of additions to the IL in order to include such things as multiprocessing, exception
handling, call by name, and compile-time macros. It would be difficult to extend the IL to include
languages with radically different syntax and semantics from that of CMS-2M, such as APL, LISP,
GPSS or SNOBOL.

3.5 RESULTS AND CONCLUSIONS

The most straightforward idea for translating programs is to build a complete transducer that reads
programs in the old language and translates each construct or sets of constructs in the old language
into one or more corresponding constructs in the new language. While this approach may work in
some cases, it fails when the new language is not a complete superset of the old language. In the
present case, we know that there is no real possibility of translating into Ada arbitrary programs
written in the several old languages.

The Autopsy project combines automatic translation techniques with an interactive system to
provide the human manager complete control over the translation process. The human may ask the
system to attempt translation of all or some of an old program. The human may also control the
translation more intimately by specifying that a particular transformation be applied or by supplying
the replacement code himself.

There are a number of potential problem areas that complicate translation. These problem areas
may be divided into five categories:

1. Constructs that are untranslatable.
2. Constructs that can only be translated by using direct code in the target language output,

i.e., features of the source language that have no analog in Ada.
3. Problems that exist because of vague language definition.
4. Constructs for which translation is possible, but ugly.
5. Constructs that raise philosophical issues regarding their proper translation.

We consider each of these in turn.

1. Untranslatable constructs

Timing loops Any source code that depends on the execution speed of code
translated by a particular compiler probably will not work in the
translated code.

RESULTS AND CONCLUSIONS 27

Direct code that makes assumptions about the compiler
If the source program contains direct code (assembly language), and
that code makes assumptions about the compiler (e.g., register use,
calling sequences, naming conventions for variables), then the direct
code itself will have to be changed.

Overrunning array bounds
Many languages allow the programmer to deliberately index an array
with an index outside the declared range. Ada normally checks for
this condition. Thus, any code which depends on overrunning an
array would not be translated in such a way as to run correctly in Ada,
without using a pragma to suppress the index check.

System index and local index
The system index feature of CMS-2M cannot be translated because it
causes the compiler to allocate registers differently. It cannot be
assumed that Ada compilers will be so compliant.

Code length The code produced by the translated Ada program may be longer
than the code produced by the original source program, which could
cause an insufficient memory problem.

2. Constructs requiring direct code translation

Microprogram declarations

CMS-2M supports microcode procedures. This feature has no analog
in Ada. Of course, modifying the microcode may also have

unfortunate side effects that would invalidate the translation.

3. Vague definition problems

Array storage order
Ada does not dictate the storage order for multidimensioned arrays.
Thus we do not know whether or not it is necessary to reverse the
order of subscripts in the translation. This makes a difference in
paged systems and to direct code assuming a particular storage
order.

Warning messages The compiler may accept certain erroneous inputs and yet produce
correct output, usually after giving a warning message. In effect, this
expands the language, but in a poorly defined way.

Undocumented features
The source language compiler may have extra features which are not
documented, but which are used in programs.

4. Ugly translations

Fixed-point arithmetic
The CMS.2M manual describes an algorithm for binary-point
alignment during fixed.point arithmetic. Ada uses a different
algorithm that requires the specification of more detail.

Vertical format tables
CMS-2M vertical format tables are arrays of structures stored with the

28 AUTOPSY

indexed subfields grouped instead of the usual way. These can be
translated into Ada but require a different data structure.

Different reserved words
There are reserved words in Ada that are not reserved words in CMS-
2M. If these are used as identifiers in source programs. they will have
to be renamed in the translation.

5. Philosophical issues

Compile-time macros
CMS-2M provides compile-time macro facilities. The issue is
expanding these before the translation versus producing equivalent
Ada compile-time macros as part of the translation process. We are
taking the position that the string substitution MEANS macros should
be expanded before the translation because they may include
references to CMS-2M keywords that would have no direct
counterpart in Ada. On the other hand, EQUALS macros provide
compile-time variables and arithmetic, which has a direct analog in
Ada, and this is translated.

Compiler bugs Where the source compiler has a bug should it be duplicated in the
translation, "fixed," or forbidden?

3.6 IMPACT AND FUTURE WORK

The basic concept of translation under user control has been demonstrated. Further work is
necessary to produce a useful system, but the basic framework appears sound. A somewhat
surprising result is that Ada code produced by the translator is no larger than the source CMS-2M
code.

This work has ceased at ISI, but a group at the Aerospace Corporation interested in J73 to Ada
translation is continuing work with this system.

REFERENCES

1. Brosgol, Benjamin M., et al., TCOLAd a : Revised Report on An Intermediate Representation for the
Preliminary Ada Language, Carnegie-Mellon University, Technical Report CMU-CS-80-105,
February 1980.

2. Crocker, Stephen D., and Richard Gillmann, "AUTOPSY: Conversion of CMS-2M programs to
Ada," in Proceedings of the CMS-2 User Group Conference, Fleet Combat Direction Systems
Support Activity, San Diego, Calif., February 1979.

3. Gillmann, Richard, Stephen D. Crocker, and Craig Taylor, Translation of CMS-2 Programs to
Ada, USC Information Sciences Institute, WP-19, February 1980.

4. Ichbiah. Jean 0., et al., Reference Manual for the Ada Programming Language, United States
Department of Defense, 1980.

5. User's Handbook for AN/UYK-20(V) Computer. Support Software, CMS-2M, NAVELEX. 1975.

I

VT

29

6. Samet, Hanan, "Proving the correctness of heuristically optimized code," Communications of

the ACM 21, (7), July 1978, 570.582.

7. Steel, T. B., "A first version of UNCOL," in Proceedings of the Western Joint Computer

Conference, pp. 371-377, AFIPS, 1961.

31

4. FORMAL SEMANTICS

Research Staff: Research Assistants: Support Staff:

Stephen 0. Crocker Robert Mcdonnell Joyce Reynolds
Avra Cohn Debbie Shishkowsky
Richard Gillmann
Michael Gordon
David B. MacQueen
David F. Martin

4.1 INTRODUCTION AND BACKGROUND

The principal goals of this project are the development of tools and methodologies for supporting
the development of precise, readable, and accurate formal semantic definitions (FSDs) of
programming languages. The specific research focus of the project is building tools for manipulating,
processing, implementing, and testing the formal definition of Ada written by a group at the Institut
National de Recherche en Informatique et en Automatique (INRIA) in France.

The ISl Formal Semantics Project grew out of a pre-existing effort (the Autopsy Project) to develop
translators between source languages. Part of that effort was theoretical and resulted in our learning
a great deal about denotational semantics. In addition, the Autopsy Project focused on translation of
CMS-2M programs to Ada, which brought us into the Ada orbit. A month-long visit by Gilles Kahn and
Veronique Donzeau-Gouge of INRIA in August 1979 opened up communication between the ISI and
INRIA groups.

At the Ada Test and Evaluation Workshop held in Boston in fall 1979, the Ada FSD was discussed
and preliminary drafts were made available. Because of the complexity of this definition, machine
aids for manipulating and verifying it were believed to be highly desirable, and this project was
initiated.

4.2 FORMAL DEFINITION OF ADA

DoD commissioned the design and implementation of the Ada programming language with the
intention of requiring most future military systems to be programmed in Ada. It is therefore necessary
that Ada be precisely understood by both its users and implementors, in order to ensure the quality of
systems written in Ada. In particular, since DoD must control Ada compiler implementations, a
precise, well-structured, and validated formal definition of Ada can provide one of the principal
standards to which these implementations must adhere.

4.2.1 The INRIA Definition of Ada

A denotational formal semantic definition (FSD) of Ada [2 has been developed at INRIA [1]. Of the
various techniques for writing formal semantic definitions, denotational semantics was chosen by
INRIA for its conceptual clarity, strong mathematical foundation, conciseness. and implementation-

32 FORMAL SEMANTICS

independence. There is some experience in writing definitions of real languages using denotational
semantics (e.g.. Algol 60, LISP, SNOBOL, Pascal, Algol 68), and there are some tools available which
support this form of definition (e.g., SIS [3]). Despite its conceptual power and popularity, however.
denotational semantics (in common with other semantic notations) exhibits weaknesses in practice
when applied to "large" languages like Ada. A typical denotational semantic definition consists of a
collection of mutually recursive functions. which, in the case of Ada. is quite large. Understanding the
semantics of an Ada construct requires the application of a generally long sequence of these
functions to an abstract syntactic representation of the construct. Attempting to do this without
machine assistance will most certainly result in a great many errors and is. in a practical sense.
impossible. Consequently, a complete understanding of the Ada FSD is difficult to achieve due to its
sheer size and complexity: unaided human application of this FSD to understanding Ada programs is
at best an arduous task.

4.2.2 Processing the Ada FSD

The preliminary Ada Reference Manual [2] is divided into a number of chapters, each devoted to a
specific aspect or component of the language. None of the FSD appears in this manual. The draft
Ada FSD [1], however, is organized by "folding" it into the manual so that each chapter contains the
pertinent procedures of the Ada FSD.

The draft Ada FSD is available on the ARPANET (at HI-MULTICS): all our work is done on copies of
this source. The text of the FSD contains embedded format and font control commands, intended for
processing by a text-formatting system. We have developed tools for processing this raw text,
preparatory to the main task of implementing and testing the Ada FSD, among which are:

" a program to automatically translate the embedded format and font control commands
into equivalent commands for the Scribe document production system [4], so that
formatted copies of the FSD can be produced at ISI;

" a program to extract the procedures of the FSD from the text they are embedded in;
" a program to translate the procedures of the FSD into an intermediate form that serves as

input to other tools;
• a cross-reference program for the Ada FSD.

4.2.3 Deielopment of an Executable Ada Formal Definition

It is imperative to construct appropriate tools to aid the understanding and validation of the Ada
FSD. Such tools could be used in two ways. Initially, Ada test cases whose semantics are well
understood could be used to test the correctness of the FSD. Subsequently, after confidence in the
correctness of the Ada FSD has increased, the tools could be used to answer specific questions
about parts of the FSD as they relate to example Ada programs whose semantics are not readily
apparent. A plan has been developed for validating and understanding the Ada FSD, using
supporting tools whose design and implementation are proposed.

Other tools for machine-processing and testing denotational semantic definitions exist, principal
among them being Peter Mosses' Semantics Implementation System (SIS [3]). Serious coosideration
was given to using SIS, but translating the Ada FSD into a form processable by SIS did not seem to be
an attractive course of action because:

FORMAL DEFINITION OF ADA 33

" the procedures of the FSD would have to be automatically translated into DSL (SIS's
semantic metalanguage), and it was not clear that this task would be straightforward:

" operation of the lambda calculus interpreter underlying SIS cannot be controlled, and
run-time errors committed by an interpreted formal definition are very difficult to
diagnose;

" the inner workings of SIS are not documented to an extent that makes SIS readily
modifiable, should that become desirable or necessary.

The Ada FSD is written in an "Ada-like" sugaring of typed lambda calculus; we call this language
AFDL, an acronym for Ada Formal Definition Language. Our validation plan consists of translating
the procedures and data types of the Ada FSD into an interpretable representation intermediate
language (AFDL-IL), transforming candidate Ada test programs into abstract syntax trees, and then
applying the translated FSD to the abstract syntax trees to obtain the (static and dynamic) semantics
of the corresponding programs. The semantics thus obtained can then be compared to the expected
semantics. In addition, tools to generate useful items such as cross references of the FSD's
procedures and intrinsic data types will be designed and implemented.

Despite the apparent straightforward nature of this plan, there are many problems that must be
solved in order to implement it. The plan given below outlines these problems in an orderly
framework. First, to set the stage, an overview of the structure of the Ada FSD is given, followed by a
review of the status of the Ada FSD. Then the proposed plan is outlined, and some of its principal
tasks are discussed.

Structure of the Ada FSD

Basically, the Ada FSD consists of a collection of mutually recursive value-returning procedures
together with a repertoire of basic data types. From an operational point of view, the Ada FSD is
organized into three "phases," one of which is syntactic and the others semantic. The syntactic
phase establishes a relationship between the concrete and abstract syntax of Ada by providing a
specification of both the concrete and abstract syntactic domains together with a (constructive)
mapping from the former to the latter. ,) practice, this mapping is implemented as a parse-driven
construction of Ada abstract syntax trees from corresponding Ada program strings. The semantic
phases, which process abstract syntax trees, are two in number. The first, called static semantics,
performs what are generally considered to be "compile-time" functions such as static type-checking.
If this phase fails to find any errors, then it produces an abstract syntax tree which is a modified form
of the tree input to the static semantic phase; otherwise, an error message is output. The final
semantic phase, called dynamic semantics, determines the "run-time" semantics (the meaning of
procedures, expressions, etc.) of statically checked abstract syntax trees output from the static
semantics phase.

Status of the Ada FSD--September 1980

At this time, the Ada FSD is incomplete in two major respects: (1) AFDL is not completely
characterized, and (2) some of the FSD is missing. Consequently, one of the first orders of business
is to remedy these discrepancies. AFDL must be appropriately characterized; this can be done as a
joint effort by ISI and INRIA. Procedures missing from the FSD must be identified and supplied; the
burden of supplying the missing procedures necessarily falls on INRIA. Our perception of the status
of the Ada FSD as of September 1980 now follows. Emphasis is placed on the status of the definition
of Ada abstract syntax, the definition of the basic data types of AFDL, and the degree of completion of
the AFDL procedures constituting the static and dynamic semantics of Ada.

34 FORMAL SEMANTICS

ABSTRACT SYNTAX

In the Reference Manual [2]. the concrete and abstract syntaxes of Ada are defined, the latter less
explicitly than the former. In fact, there exist two abstract syntaxes: a p.est-parse abstract syntax
(which is input to the static semantics phase) and a post-static-semantics abstract syntax (which is
input to the dynamic semantics phase). The correspondence between the (post-parse) abstract
syntax and the concrete syntax given in the Reference Manual is implicit; it must be given explicitly or
else the reader must be given enough information to deduce the exact correspondence, as this is
necessary for a detailed understanding of the FSO. The form of the abstract syntax is currently being
revised by INRIA.

BASIC DATA DOMAINS OF THE FSD

The FSD is written in a language that is said to be an "extended subset of Ada." The procedures of
the FSD use several basic data types (trees, environments, continuations, etc.), which are not
declared or otherwise defined. If indeed the FSD is considered to be written in an Ada subset, then
these basic data types must be declared or "packaged" in order to make the FSD a complete subset-
Ada program. If on the other hand the FSD is considered to be written in a syntactically sugared
version of typed lambda calculus (this is the view we favor), then these basic data types can be
considered to pre-exist, and thus they would be a "hard-wired" part of the definition (and thus of the
semantics of AFDL). They must still be defined, however.

AFDL SEMANTICS

If AFDL is regarded as sugared lambda calculus and if its basic data types are predefined as
mentioned above, then deducing the semantics of AFDL presents no significant difficulties. The only
novel nonlambda-calculus features of AFDL are a case statement and the specialized use of Ada
generics, which can be compiled into "standard" lambda calculus equivalents, along with the
overloading of some operators.

FSD PROCEDURES

Most of the procedures of the Ada FSD seem to be present and complete. However, a more
accurate estimate can be made only with the aid of a mechanized cross-reference, which can be
generated by appropriate tools.

The Plan

The Ada FSD must be completed in accordance with some of the above discussion, and AFDL must
be characterized and implemented. In order to test the FSD, its syntactic and semantic phases will
have to be implemented. Prior to that, the mapping between concrete and abstract syntax trees will
have to be more explicitly specified than it is in the draft Ada FSD. In fact, the concrete syntax should
be defined using a grammar more suitable for parsing (such as an LR(1) grammar) than the concrete
syntax given in the manual. Some of this has already been done, and the rest can be completed by ISI
with some interaction with INRIA. Implementing the semantic phases will require understanding and
reconciling the semantics of AFDL and whatever executable representation is chosen, so that the
required translation from AFDL to the executable representation can be accomplished. Suitable test
cases must then be designed and run, and the results interpreted.

FORMAL DEFINITION OF ADA 35

Fialuation Strategy for AFDL

The basic semantics of the Ada FSD is that of the (typed) lambda calculus, which assumes a
specific order of expression evaluation (call-by-name), and static binding of free variables in
expressions. If the executable translation of the FSD is to be faithful to this semantics, it follows that
the execution mechanism should also use the same or equivalent binding and order of evaluation.

Since Interlisp uses dynamic binding and a different order of expression evaluation (call-by-value),
it would not be easy to use the Interlisp evaluation mechanisms to faithfully model the semantics of
AFDL. Call-by-name cannot be approximated very well using NLAMBDAs and similar devices (partly
because of dynamic binding). A special-purpose interpreter based on an algorithm similar to that
used by Mosses in implementing DSL seems to be more promising.

Type-Checking AFDL

Static type-checking of the AFDL code is an essential part of testing the Ada FSD. It also eliminates
the need for most run-time type-checking during execution of the FSD. The simplest way to type-
check AFDL code is to first translate the code into an intermediate form (abstract syntax) which
retains the declarative type information, and then apply a type-checking function which returns a
similar form with the type information removed if type-checking succeeds, and otherwise identifies the
type error. The result of (successful) type checking is a form which can be interpreted directly, or
translated into an equivalent Interlisp form.

Since AFDL is essentially an Ada-like sugaring of a typed, applied lambda calculus (the usual
vehicle for expressing denotational semantics), we can start with a standard, fairly simple algorithm
for the typed lambda calculus and add some ad hoc components to deal with exceptional cases like
generic procedures and operators.

The design and implementation of a type-checking system for AFDL will involve the following
subtasks.

" The basic types used in the definition must be identified, along with associated primitive
operators and their types. These constitute the base case of the inductive type-checking
process.

" Generic procedures and their instances must be identified and special type-checking
routines written to handle them. Fortunately, it appears that only a few, fairly simple,
generic procedures are used in the FSD. Typically, they are used for iterating over
sequences and similar limited and well-defined purposes.

A number of other issues or potential problems must also be considered, including:

- Representation independence f Itasic types. For the most part, the basic types
used in the FSD appear to be used via their associated primitive operations, so their
"internal" structure or representation is irrelevant. A minor exception is the use of
continuation types which have a functional structure, so that values of a continuation
type (such as EXEC-CONT) can be applied to other values. Any serious violations of
representation independence would complicate type-checking.

- Type-free treatment of abstract syntax. There is a certain looseness or
impreciseness in the type structure of the abstract syntax All syntactic structures are of
the same type. namely TREE, and the syntactic types are indicated by a component of
type CONSTRUCT. This means that operations, such as selectors, associated with the
abstract syntax will have to do run-time type-checks on their arguments This could be
avoided by fully elaborating the type structure of the abstract syntax (i.e., introducing a
separate type for each construct).

36 FORMAL SEMANTICS

Overloading There does not appear to be any use of overloading in the FSD. If
overloading were present. it would make type-checking significantly more complicated.
An aopaen, exception is tVe fact that abstract syntax selectors are overloaded, but this is
yot true ,.eroaling bea:u.e of the lack o' type structure in the abstract syntax, In
effect these overloadings mist be resolved at run-time along with the syntactic type-
checking

In summary. static type-checking of the Ada FSD should be relatively straightforward, but it cannot
be complete because of the lack of type structure in the abstract syntax.

4.3 SUMMARY

Our research toward the design and implementation of tools and a methodology for testing the Ada

formal semantic definition is well under way. We expect that our work will provide a practical means

of ensuring the consistency and accuracy of the FSD, thereby making it more reliably useful to the

Ada community.

During the coming year we expect to

- precisely ascertain to what degree the Ada FSD is complete:

- complete the characterization of AFDL:

- complete the "static" validation of the FSD by parsing and type-checking its procedures;

- make significant progress toward the design and implementation of the AFDL interpreter:

- implement an Ada parser that outputs the abstract syntax representations of Ada
programs

REFERENCES

1. Donzeau-Gouge, Veronique, Gilles Kahn, and Bernard Lang. Formal Definition of Ada,

Honeywell, Inc. and CII-Honeywell Bull, 1980.

2. Ichbiah, Jean D., et al., Reference Manual for the Ada Programming Language, U.S. Department

of Defense, 1980.

3. Mosses, Peter D., SIS: A Compiler-Generator System Using Denotational Semantics (Reference
Manual), University of Aarhus, Department of Computer Science, Institute of Mathematics, DK-

8000 Aarhus C, Denmark, 1978.

4. Reid, Brian K., and Janet H. Walker, Scribe Introductory User's Manual, 1980.

37

5. COOPERATIVE INTERACTIVE SYSTEMS

Research Staff: Research Assistant: Support Staff:
William Mark Tom Lipkis Andrea Putnam
David Wilczynski
Robert Lingard

5.1 INTRODUCTION

The recent concentration of effort in interactive systems has produced a number of powerful online
services to help users solve problems. The functions performed by these services are often closely
aligned with user needs. However, user acceptance of these services has been quite limited due to
the lack of an adequate user interface. While trained computer users are usually willing to contend
with the idiosyncrasies of individual services, office managers, military commanders, and home users
are far less tolerant. Though the transfer of computer technology to these "real user" environments
is now economically feasible because of recent hardware advances, the transfer will fail unless the
user interface for the services on the system makes them easy and natural to use.

A "cooperative" interactive system is one which provides a natural interface for its users, responds
rapidly to user requests, and behaves in a consistent manner across a wide range of functional
services and input/output capabilities. Our research in this area is centered on the construction of a
system, Consul, which will provide natural input/output and help facilities for users of interactive
services such as electronic mail, automated appointment calendar, and document preparation.
Although the system is intended to be used by, and be individually adaptable to, a wide class of users
ranging from novice to experienced, our concentration is on the problems of the novice and
occasional user.

The Consul system provides a methodology for building services into a single natural interface
facility. This approach is based on our belief that no fixed set of services can satisfy the interactive
computing needs of a diverse community of users. Users' needs change constantly, and vary greatly
from one environment to another. We believe that the needs of any particular group of users must be
satisfied by service builders familiar with those needs.

However, the task of building an interactive service that provides a natural interface and remains
consistent with other services is too great to be left as a burden for individual service builders. What
is needed is a system that has already solved the basic problems of providing a natural, consistent
interface, and into which new services (or changes to existing services) can be incorporated with
relative ease. This is the purpose of the Consul system.

A prototype system has already been built to demonstrate some of these ideas. The design and
capabilities of this system will be described in detail below. An outline of ongoing and planned
research activities follows, describing the extension of this experiment to demonstrate a working
cooperative system in an advanced computing environment with electronic mail and appointment
calendar services. Finally, the impact of such a system on future interactive computing is discussed.

38 COOPERATIVE INTERACTIVE SYSTEMS

5.2 THE PROBLEM

The technology for building user interfaces has not kept pace with the growing demand for
interactive computer services. Interfaces to interactive services still do not follow general
conventions, offer adequate help and documentation, or provide sufficient flexibility. Most interfaces
do not even attempt to adapt to users, accept the user's natural input form, explain errors, or answer
user questions. This is really not very surprising as user interfaces are hard to write- -especially since
no consistent methodology for developing interfaces has ever been formulated. The additional
burden of building an interface with enough knowledge of users and systems to be truly cooperative
is simply too great to allow implementation in any but a very few services.

The burden of building user interfaces is especially serious as we enter this era of new computing
environment development. As new systems are built, many totally new services will be implemented
in the new environments. Given the notorious longevity of services--good or bad--it would be a
serious setback if the new services were constructed in the same inadequate way as the old.

The problem, then, is that interactive services are hard to use and that easier-to-use services are

hard to build.

Interactive services are hard to use because:

Individual services come complete with their own conventions, command
language, and capabilities. Most interactive systems, like DEC TOPS-20 or IBM TSO.
offer an environment in which each user program is self-contained and responsible for all
of its own user interactions. As a result, service builders tend to be independent in their
approach to user interaction; consistency with other services is rarely a design goal.
Interactive services offer inadequate help, documentation, and explanation
facilities. There are few examples of systems which offer useful help features as an
integrated part of normal operation. Those that do often cannot offer the right kind of
help to users. For example, the SIGMA message system [16] had a sophisticated online
help system [14] that organized information about its terms as a tree-structure. However,
user interviews showed that this facility was generally ignored. Users who did try the help
facility did not find it helpful. The static kind of information in this kind of help data base
is best presented in manuals. What users really need are answers to questions like "How
do I do X?" "What happens if I ...?" "Why did Y occur?" "Can I undo the effects of Z?"
To answer these questions, a system needs to have knowledge about its own
functionality and its dynamic execution state.
There is an inevitable mismatch between user needs and service capabilities.
Command languages, function keys, pointing devices, etc., are inevitably deficient in their
ability to express all of the possible variations and combinations of users' needs. User
requests may therefore go unanswered--even though the desired functionality is present
in the actual service- -because of a mismatch between the user's expression and the
system's expectation. Currently, users resolve this mismatch by seeking aid from human
experts; but experts are often unavailable,

Cooperative interactive services are hard to build because:

Cooperative interfaces are large, complex pieces of code that are hard to adapt
to different services. It has been estimated that more than half the code in current
interactive systems is devoted to the user interface; and according to Schwartz [15],
highly interactive programs are four times as hard to write as noninteractive programs.
The few attempts to build cooperative interfaces have each concentrated on enhancing
specific services [4, 5, 6, 7]. Though leading to individually successful systems, this
approach has two limitations: 1) the techniques developed tend to rely fundamentally on

THE PROBLEM 39

the peculiar characteristics of that service-.it is hard to see how to apply them to new
services; and 2) the techniques often depend explicitly on having a small set of functions
--they have not been applied to services with what we consider to be a "critical mass" of
functionality.
Interactive services must be designed for adaptability and change. Services that
require adaptation by the user will have very limited appeal. Services must therefore
adapt to the needs and style of the user, especially as the user develops expertise and
higher expectations. These expectations can lead to changes in the user's requirements
for service functionality. Any resulting modifications must be made in the context of the
user's model of the service. Changes should perturb the user's model only slightly:
maintaining the style and structure of the user interface is crucial.
Service builders do not have an appropriate environment in which to build
cooperative interactive services. Services in TOPS-20- or TSO-type systems cannot
share functionality and cannot communicate with one another in any meaningful way.
The UNIX operating system [8] attempts to address this problem by giving programmers a
system language for configuring complex functions out of smaller ones. However, the
arbitrarily low-level functionality with which UNIX must deal prevents it from applying any
high-level conventions to the composition and communication tasks. Its function-sharing
capabilities therefore provide little help in building a cooperative interface.

5.3 TECHNICAL ISSUES

The object of the Consul system is to provide an environment in which interactive services are easy
to use and easy to build. What is needed is a methodology for interactive systems that

° provides a solution to the problem of building in enough knowledge about users and
systems to provide intelligent flexibility in the interface,

" provides guidelines for the construction of interactive service software,

° enforces consistency at the interface to all services.

Achieving these goals requires the solution of a number of research problems:

1. Reoresentina the knowledge that allows a natural interface: Providing natural language
input and explanation facilities requires large amounts of domain-dependent knowledge
represented in a consistent framework. Much of the Consul research effort involves
modelling the possible characteristics and behavior of users and services. The result is a
carefully structured, built-in knowledge base containing a systems model, a conceptual
framework for and representation of possible service operations, data structures, and
events.

2. Mapping between different world views provide flexibility: The flexibility to handle
diverse and ultimately unpredictable user requests requires mapping the user's
descriptions of his needs into the service's descriptions of its capabilities and
requirements. Consul' syst, ms model includes the inference rules required to map
between different forms of description. Consul's mapper uses these rules to transform
descriptions of user requests into calls to the service functions that can be executed to
satisfy these requests. If the request calls for explanation, the mapper uses inference
rules to transform descriptions of system activities and errors back into the user's world
to produce a response.

3. Buildina services I sj ._ flexibility: A natural interface requires flexibility in the use of
service functionality. Services must therefore be constructed so that the granularity of
their functional modules is small enough to allow a large variety of dynamic
recombinations (to satisfy a large class of unpredicatable task specifications). Of course,
,,oplementation of a service as a large number of functional modules requires careful
-:tention to problems of system organization, control structure implementation, and
pcrfc-mance. Consul's process script formalism provides a mechanism for

,, I I I I I I I I -

40 COOPERATIVE INTERACTIVE SYSTEMS

constructing, organizing, and controlling services as structures of small-grained
functional modules.

4 Ensuring consistency from the user' 2Q int Qf view: The user interface must not only be"natural." but consisteniy natural across services built by different individuals, providing
different functionality, and satisfying different user needs. Consul provides interservice
interface consistency by always structuring service-dependent knowledge in terms of its
single systems model. This model transcends individual service boundaries and
organizes all services into a single Consul knowledge base.

5.4 APPROACH

These individual responses to technical problems are actually parts of a single Consul approach to
the cooperative systems problem. This section describes the approach in the context of the current
system and its two major thrusts: making a service easier to use by handling the user's natural input,
and making the service easier to build by providing the process script software design methodology.

5.4.1 The Current System

The Consul system consists mainly of description environments ("models") for representing the
various kinds of knowledge it requires- -knowledge about users, services, and interactive systems in
general. Relationships between descriptions are represented in terms of inference rules, which are
"applied" to transform one kind of description into another. Thus, understanding a natural language
user request means redescribing it (using inference rules) until it can be seen as a service model
description of a function call. This function call is then executed to satisfy the user's request.

Consul integrates new services into its environment by influencing the service-building process via
its process script software design methodology. Implementing services in the Consul environment
includes describing them in terms of Consul's abstract service-independent model of interactive
systems. This ensures a unified and consistent treatment of service-dependent knowledge within the
system. The process script programming formalism has been especially designed for the task of
providing an adequate service description as part of the programming process.

The basic structure of the Consul system is shown in Figure 5-1. The knowledge base is central to
all system activities- -parsing, mapping, and execution. It contains several kinds of information:

Systems model: a service-independent representation of the detailed behavior of the
basic operations found in any service (e.g., deletion, scheduling, display), along with the
data structures these operations work on (files, tables, display lists, etc.). The particular
operations and data structures of any service can be described in terms of this
representation, and thus be "understood" by Consul (i.e., seen in relation to the other
things that Consul knows about).
Service model: a particularization of the systems model to the actual operations and
data structures of some interactive service that is implemented in Consul. For example,
the model for a message service would describe specific (actually executable) functions
like "DeleteMesssage" and "ShowMessage," and specific objects like "MessageFile"
and "MessageDisplayHeader"). This service model would thus describe the actions and
objects of the message system in terms of the general concept structure laid out by the
systems model.
Process scripts: a programming formalism for implementing services within the Consul
system. Process script programs consist of two parts: a procedure -to perform some
action on the machine and some descriptive information about that procedure. The

APPROACH 41

SYSIM Model

ti-- -

ecutionn scriptl

Figure 5-1: The current Consul system

descriptive part is in the form of a small number of categories of information required by
Consul in order to see how the function represented by the process script fits into its
systems model (see Figure 5-6).
Code: the application language programs that implement the lowest level functions of the
service (e.g., how a file pointer is generated from a file name). Since it is not practical for
Consul's model of an operation to extend all the way down to the most detailed level of
implementation, Consul gives the programmer a mechanism for describing some aspects
of his service as black boxes as far as Consul is concerned. The connection between
these black boxes and the process scripts of the service is in terms of process atoms.-
identical to process scripts except that they contain, instead of a body, a call to a piece of
actual application code (the black box)--see Figure 5-7. A service thus consists of a set
of process scripts that relate service functions to the rest of Consul's knowledge base
(through the process script descriptors) on the one hand, and to pieces of application
code (through the process atoms) on the other.
Dynamic Environment: a model of all system and user activities as events in time, i.e.,
invocations of the actions defined in the user and service models. This event model
serves as a dynamic environment for expressing the behavior of the user and the system.

All of these models are currently under development in the Consul system. The systems model,
which has been the focus of much of our attention, contains a spanning set of abstract actions and
objects, with detailed structure for a number of them. A service model is currently being constructed
for a message system (16]. An initial definition of the process script language has been formulated,
and about 25 message system functions have been written in terms of it.

Using this knowledge base to provide interface facilities (handling natural language, explanation,
error handling) is a process of knowledge-based inference and process script execution. The
system's basic operating mode is as follows: the user types a request into the system; the request is
parsed, i.e., rendered into the system's knowledge representation; inference is used to map the
representation of the user request into a description of some system action; this action, a service
operation, is then executed by the process script interpreter, thus fulfilling the user's request. These
mapping and execution processes are outlined below and then discussed in the context of a real
scenario of Consul action.

42 COOPERATIVE INTERACTIVE SYSTEMS

Parsing A e-, ;-o.-,rful parser [1, 2) has been interfaced with the current Consul
p- pavser is _apable or handling a wide variety of requests. and the Consul

- ... > :, rase 1 scussed above will provide the underlying semantics to allow it to do
,: , i" , teparser s ,rterpretatlion of the request

Get rid of message 6.

:)e conStru-ted as a specalization of Consuls knowledge base representation of
,.:, ests t remove things ' That is, the parser translates the user's natural request

rm to th- Sslm s i, nowledge base form Parser development per se is not part of our
,es,-a,(1 effort but is being carried out cooperatively at Bolt Beranek and Newman, Inc.
Inference Parsing tne user request is not the same as understanding how to respond to

o, .erstand"iig is achieved via rule based inference [10]. Each input to the system is
'' s' assifiec t,- the Knowledge base according to its relationship with the knowledge that

j ,-.. , !he:e However. the initial classification produced by the parser is rarely
si ',1 to Wc.o. the system to take action (i.e.. there is no "get rid of message 6"
0;):,on' r he LJser s request must therefore be redescribed (and reclassified) if the

stern :s to knrowh how to handle it. Redescription is accomplished by the application of
,nt-rence rules For example. a rule exists to redescribe "requests to remove things" as
* cals to delete operations." If this rule is applied to the user's initial request. the request
becomes a "call to a delete operation on message 6." This redescription is then
classified in the knowledge base. Rule application continues until a description of a call
to an executable operation (i.e., an actual process script--in this case. the one to delete
messages) is generated. This call can then be executed to satisfy the user's request. The
scenario in the following section shows the mapping process in detail.
Execution: Process scripts are executed interpretively in a special environment set up by
Consul Process script execution involves more than evaluation of the procedure body to
achieve a functional effect: the process script interpreter must access the dynamic
environment to make processing decisions and update this environment to show
execution results. Also, when a process atom is executed, the interpreter must invoke
the appropriate application code in the processing environmernt of the application
language.

5.4.2 Making Services Easier To Use: Handling Natural Requests

This section gives a step-by-step account of Consuls processing of the user request

Show me a list of messages.

for a message service based on the SIGMA system [16]. The scenario describes the system's
mapping of this request into two process script calls,

OpenSummaryFile;

ShowSummary File;

which are then executed to satisfy the request.

The first stage of this mapping effort is translating the input utterance into Consul's network

representation, as implemented in the KL-ONE formalism (3]. This is the job of the parser, which,
based on the system's model of "show requests," produces the KL-ONE concept Show Request. 1,
shown in Figure 5-2 (assuming that the request came from user "Smith").

Consul classifies this structure in its knowledge base, finding, as shown in Figure 5-3, that it is a

subconcept of the condition of Rule1. This means that Consul can redescribe Show Request.1 as
a call to a "display operation" according to the conclusion of Rule 1. The result is a new description,

APPROACH 43

(object) (recipient)

Figure 5-2: The parse of "Show me a list of messages."

Display Operation Invocation1.1, which Consul then classifies in its knowledge base. If, via this
classification process, the new description is found to be a subconcept of an executable function,
inference is complete--Display Operation Invocation1.1 can simply be passed on to the Consul
interpreter. Otherwise Consul will have to use additional rules to refine the description until it can be

seen as an actual call on some other function or functions.

showRequet. /1

(ob ject) rcpe)

Figure 5-3: Application of Rule 1

Figure 5.4 shows the classification of Display Operation Invocation 1.1 in Consuls knowledge

base The description is not a subconcept of an executable function (flagged executable). This
means that Consul must find an applicable mapping rule to further redlescribe Display Operation
Invocation 1.1. Figure 5.4 also shows that Display Operation Invocation1.1 has been classified

Fiur 5- shw th clsiicto of Dipa. ...inIvo ai i osls nweg

44 COOPERATIVE INTERACTIVE SYSTEMS

as a specialization of Display Operation Invocation2, A fuller view of the knowledge base. seen in
Figure 5-5, shows that Display Operation Invocation2 happens to a mapping rule condition, This
means that the rule, Rule2, is applicable to the current description Display Operation
Ir vocationl .1

Show EXECUTABLE

Display~peratiorn(n

MesgeList.1 (member) (member)

Message.1 (summarizes)

Message
Figure 5-4: Classification in Consul's knowledge base

The rule itself is quite general: users frequently ask to see a list of things (messages, files, etc.)
when they really want to see a list of summaries of these things (surveys, directories, etc.). Consul's
expression of the possibility of transforming the first sort of request into the second is Rule2: "if the

2current description is a display operation to be invoked on a list of summarized objects, then it can
be redescribed as a display operation on a list of summaries of those objects."

The application of this rule leads to redescription of the original description as Display Operation
Invocation3.1. As can be seen in Figure 5-5, this is a specialization of the executable function
Show Summary File Invocation. The inference process therefore concludes, passing its result
description on to the interpreter for execution. If, during execution, the interpreter discovers that the
Preconditions of Show Summary File (see Figure 5.7) are not satisfied, it will return to the inference
process in order to generate a call to open the correct file (in general requiring the application of
additional mapping rules). This would finally result in the pair of message system actions mentioned
at the beginning of this section and shown in Figure 5-7.

The scenario presented above was rather pat in the sense that there was always a mapping rule (or
executable function) applicable to the description at hand. What if this were not the case? For

2That is, objects for which summaries exist (e g files and their directory entries)

APPROACH 45

(odto) R62 (oncuon) _-

Oisplay~peration I ~ pay~peration
Invocation2 / Invocation3

Qnpo) (, O nput)

(Member)~t (mml)r

(sumsummarizes)

Figure 5-5: Application of Rule 2

example, if in the message service used in the above scenario messages were not always
summarized objects," then Message.1 would not have specialized Summarized Object1 in

Figure 5-5, and Rule2 would not have been applicable.

If no applicable function or rule can handle the current description, the system seeks a "closely

related' function description to use as a mapping target. The definition of "closely related"* is that the
two descriptions must share a common ancestor that is a "basic" concept in Consul's actual
knowledge base--i.e., the ancestor cannot be part of a rule itself, or a newly generated description. In
Figure 5-4, the functi. n description Show Summary File Invocation is closely related to the
current description Display Operation Invocation(.1 because they share an appropriate ancestor,
Display Operation Invocation.

46 COOPERATIVE INTERACTIVE SYSTEMS

Once a related tool function description is found. it is used as a goal for consequent reasoning.
Consul finds the discrepancies between the current description and the desired result--simply the
differences that prevent the original description from being classified as a subconcept of the desired
description. In this example, Display Operation Invocation1.1 cannot instantiate Show
Summary File Invocation because the input of Display Operation Invocation 1 .1 is a list of
messages (Message List.1), while the executable function Show Summary File Invocation
requires a list of summaries (Summary List).

Consul must therefore find a way to redescribe a list of messages as a list of summaries if it hopes
to see the current description as an instantiation of this particular executable function, There are two
ways to transform the current description: rules and executable functions (since functions produce
new descriptions via output and side-effects). Rules are preferable because they save tool execution
time; Consul therefore looks for rules first. Consul finds relevant rules by looking in the knowledge
base for rule conclusions that produce the "target" part of the discrepancies found earlier. As shown
in Figure 5-5, Rule2 can be found by looking "up" the generalization hierarchy (not all of which is
shown) from Summary List.

Consul must next be sure that the condition part of the rule is met in the current state of the
knowledge base (the current description and the results of previous tool function executions). If the
condition is not satisfied. Consul will try to produce the needed state through further rule application
and function execution--i e.. through recursive application of the consequent reasoning process.

In this example. in order to satisfy the condition of Rule2. there must be a list of summarized
objects in the current knowledge base state. This is not currently the case. But suppose that in this
message service messages become "summarized objects" after a background process runs. Then
the knowledge base would contain a rule that says "if the background process has run since a
message was created. then the message can be redescribed as a summarized object." Consul would
find this rule during this consequent reasoning process by recursive application of the rule-finding
procedure, since it is currently looking for summarized objects. If the background process had in fact
run since the messages satisfying the description Message.1 were created, then the messages
could validly be redescribed as summarized objects, and the condition of Rule2 would be met.
Rule2 could then be applied, and Consul would once again successfully redescribe the initial user
request as an executable function.

5.4.3 Making Services Easier To Build: The Process Script Formalism

Consul's ability to provide users with a natural and consistent interface depends on constraining
the implementation of interactive services. Part of our research effort has been the formulation of a
software methodology to insure the development of services in accordance with the appropriate
constraints. Designed to promote the organization of services as collections of small self-describing
functional modules, this methodology results in implemented services that are both flexible and
"understandable" in terms of knowledge-based inference [9].

As in other software methodologies, Consul's process script formalism is based on the principle of
modular design. However, in order to use process scripts, the service builder must take the further
step of deciding which modular functions are meaningful to the intended users (e.g., a function to
delete a file is likely to be meaningful while one to find a file pointer is not), The decision is, of course,
subjective and as such represents a major design consideration of the service builder. In effect, it
defines the level of detail to which Consul will be able to understand the functionality of the service.

APPROACH 47

This understanding is achieved through functional description of the modules via the declarative
elements of the process script programming language. Process scripts (see Figure 5-6) give the
service builder the means to specify procedures for performing service functions while at the same
time describing aspects of the procedures that are important for classifying them in Consul's
knowledge base. That is. the description part of a process script enables the procedure to be
represented in terms of operations Consul already understands- -i.e.. that have already been built into
Consul's knowledge base. These built-in operation descriptions are important because they have
already been related to possible user requests for system action. There are presently seven
descriptive categories for process scripts. Additions and modifications to this set may be required as
we gain more experience with the formalism.

ProcessScript ForwardOpenMessage;
Input un:UserName;
Ouiput none;
DataStructuresAccessed OpenMessage;
Preconditions OpenMessageSV = true;
SideEffects none;
Undo derived;
Error Conditions e 7 :NoMailBoxForRecipient;
Body

begin
x : = FindMailBoxPointer(un);
if NuOW(x) then fail with el;
AddTolnfoField(un);
y: = CreatelnfoCitation;
SendCitation (y, x);

end;

Figure 5-6: A process script

The first descriptor declares the input required by the function. Each input parameter is described
by giving it a name and specifying its type. All type definitions are ultimately resolvable into "basic"
types already known to the system, thus insuring that the nature of the service-dependent data is
known to the system. This type information can then be used in understanding user requests and in
answering user questions about the service's functionality (e.g., "What information must I supply to
accomplish ...?"). The output descriptor has a similar use. The third descriptor, data structures
accessed, identifies other information a service function might use or modify during its execution. For
example, a data base that is updated, or variables that are "in common" across functions are
described here.

The preconditions descriptor specifies conditions (usually required values of state variables) that
must be true before a function can be executed. Preconditions can be used to detect user requests
that are incomplete or made in an improper context. State variables must be updated whenever the
execution of a service function changes the state monitored by these variables. Consul is informed of
these updates via the side effects descriptor. Thus. an inference mechanism. in trying to satisfy the
precondition of one process script, could first set up execution of another script whose side effect set
the state variable in question. The information specified as side effects can also be used to help
answer user questions regarding changes resulting from the execution of a service function (e.g.,
"What will happen if I do ...?").

48 COOPERATIVE INTERACTIVE SYSTEMS

The undoability descriptor indicates whether or not the effects of a function can be undone, and if
so, how. Knowing which functions are undoable can help Consul decide what to do in response to an
ambiguous request. If one possible action is undoable, the system might go ahead and do it, knowing
that it can be undone if necessary. On the other hand, a function that could not be undone would
never be executed if there were any question as to what the user meant.

The final descriptor is error conditions. Listed here are all the errors that could result during the
execution of the process script. Associated with each named error will be some information suitable
for presentation to the user.

The body of a process script is just a program (written in a Pascal-like language) that configures
smaller functions into more complex ones. Like the "shell" language of UNIX [12], the process script
language provides the service builder with an easy way to implement new service functionality in
terms of existing functions. Process scripts which have no bodies are called process atoms (see
Figure 5-7). These are written for service functions whose operations are below the level of user
interest or comprehension. The actual code for these process atoms can be written in any
programming language and will be executed whenever a process atom is successfully invoked. The
description part of the process atom enables the "black box" code it represents to be related to the
other operations known to Consul.

ProcessScript OpenSummaryFile;
Input sfn:SummaryFieName;
Output num:EatryNumber;
DataStructuresAccessed none;
Preconditions none;
SideEffects OpenSummaryFileSV:= true;

CurrentEntryNumber: = num;
Undo CloseSummaryFile(sfn);
Erro" Conditions NoAccessRightsToSummaryFile,

SurnmaryFileNotFound;
Call OpenSummaryFileAtom;

ProcessScript ShowSummaryFile;
Input none;
Output none;
DataStructuresAccessed OpenSummaryFile;
Preconditions OpenSummaryFileSV = true;
SideEffects none;
Undo ClearScreen;
Error Conditions SummaryFileNotDisplayable;

Call ShowSummaryFileAtom;

Figure 5-7: Process atoms

It is important to note that the process script formalism not only gives the service builder the means
of functionally describing his system, but also provides him with an interpretively executable
programming language. This greatly enhances the system's ability to help the user, since an
interpretive environment makes information regarding the dynamic state of the execution readily

APPROACH 49

available. Although interpretation affects runtime efficiency, the fact that the lower level process
atom code of the system will be run in compiled form will make it possible to maintain reasonable
performance. The resulting system, executing partially interpretively, strikes a balance between
efficient, compiled systems whose execution cannot be analyzed at runtime and totally interpretive
systems, which are generally too slow for production environments. More importantly, the portion of
the system executed interpretively is exactly that whose effects the service builder decided were
meaningful to the user.

As a test of its adequacy for specifying and describing tool functionality, the process script
formalism was used to design an interactive calendar system [13]. Approximately eighty process
scripts were written (but have not yet been incorporated into the Consul system). The production of
these scripts has shown that the formalism is at least reasonable and sufficient from a programming
point of view.

5.4.4 New Research Activities

Our efforts during the next three years will be in the following research areas:

Modelling and Acquisition: We must expand all of Consul's models and incorporate
techniques for automatically acquiring service-specific knowledge directly from the
implementers of that service.
Mapping: All of Consul's processes involving inference, especially explanation and
acquisition, must be extended in order to provide the necessary set of user interface
facilities.
Programming: In order to encourage construction of services with the characteristics
that allow them to be easily incorporated into the Consul system (i.e., small-grained
functionality, declarative descriptive information), we must build a software development
environment for process scripts.
Execution: Process script execution affects and is affected by the Consul knowledge
base; Consul must therefore maintain a process script execution environment to preserve
the effects of execution and to allow active communication with knowledge base access
and update processes.

5.4.5 Consurs Impact on Future Interactive Systems

The Consul system is a prototype for a class of systems that will have major impact on the
interactive systems of the future. Its methodology defines a natural interface to be shared across all
services in the system and provides a program development environment that aids in the construction
of services to take advantage of that interface.

The effects of having a Consul-like system fall into three major categories:

" the system allows natural interaction with a variety of users,
" changes in services and in the system as a whole become evolutionary rather than

disruptive,

" services become easier to build.

Consul's natural communication environment and knowledge-based inference facility allow the
system to adapt to different user input characterizations depending on the user's experience with a

50 COOPERATIVE INTERACTIVE SYSTEMS

service. All of Consul's support will be applied across the full spectrum of services, giving a powerful
and uniform interface. Natural language processing allows the user expressiveness not found in
command language systems. In future systems, even a single service will often have to deal with a
diverse user community ranging from beginners and occasional users to highly experienced users.
Consul's parser and inference mechanism are designed to handle both full English sentenres and
more succinct, stylized forms of expression. This is possible because of the system's model of the
underlying semantics of a/ requests, based on its knowledge of user needs and system functional
capabilities. That is, it is possible to infer the user's intent from a wide range of input forms
expressing that intent. Also, Consul's knowledge base serves as a repository from which to provide
help, explanation, and documentation about a service's static characteristics and dynamic behavior.

Change in interactive systems is inevitable. Modification of existing services (bug-fixing, new
features) and the introduction of new services are constant, expected activities in the interactive
computing world. Consul provides an environment in which both kinds of change can take place with
no disruption of the system's interface with the user. The combination of a natural language interface
and a mapper insulates the user from the peculiarities of a service's design. The system retains
uniformity and consistency from the user's viewpoint. Consul's process script formalism maintains a
separation between rapidly changing functional elements and the stable knowledge base that drives
the user interface. Consul's acquisition mechanism ensures that changes to services are accounted
for in terms of that knowledge base. As a service builder defines a process script for a service.
Consul tries to classify it in the existing system knowledge base. Once classified, the script inherits all
of Consul's knowledge about the kind of operation it specializes. New functions added in this way will
fit a user's evolving model of interactive services.

Consul can also find gaps in the functional coverage of a service. For example, Consul's
knowledge base knows that files, in general, can be copied, deleted, undeleted, expunged, etc. If a
service builder introduces a data type that is a specific instance of a file, Consul can suggest the need
for process scripts that accomplish the full range of operations possible for files. Thus, Consul has a
mechanism for helping the service builder provide functional consistency and completeness.

While it is a significant effort to integrate a service into Consul, it is much more difficult to build a
similar service without Consul support. The built-in knowledge base and its associated modelling
aids make it practical to add domain-dependent information without a special (and very large) basic
knowledge representation effort. The design and implementation environment presents a
methodology for constructing services that separates interface concerns from low-level functional

concerns, provides a framework for modularizing the service, offers uniform error-handling and
input/output mechanisms, and checks the implementation against a high-level model of what
interactive services should be like. Thus, the service builder finds that part of his work has been done
for him, and that the rest of it can be accomplished within a consistent program development
environment.

Traditionally, services are self-contained programs that perform a variety of functions. In Consul, a
service is a collection of process scripts. Since the atoms (or scripts) of a "service" have been
described independently, a service builder may find ways of incorporating those functions into a new
service. Of course, the service builder must know how the process scripts he is borrowing work, what
conditions must be met before they can be used, what side-effects they may have, and so on. In
Consul, that information is explicitly present in the knowledge base.

51

The Consul system is intended to meet the needs of interactive services in future computing
environments. Our design reflects the goal of unifying these new services within a framework offering
cooperative interface facilities to both the users and builders of these services.

5.5 SUMMARY OF PROGRESS TO DATE

" The PSI-KLONE parser [2] has been integrated into the system and can handle a variety
of sentences.

" The SIGMA message service [16] has been adapted to run under Consul.
" A model of the system, incorporating both service-independent and SIGMA-dependent

elements, has been built (without any automatic aids) and presented in [11].
" A mapping mechanism has been built to handle the sentence and rules described in

section 5.4.2, and has been reported in [101.
" The process script programming formalism and software development methodology

(reported in [9]) has been designed and has been used to implement a number of actual
process script programs.

" A rudimentary process script interpreter has been built.

In summary, our research efforts so far have resulted in a workable design for the Consul system;
implementation of the parsing, inference, and execution components at a prototype level; a fairly
significant knowledge base derived from a good deal of modelling experience; and a demonstration
Consul system consisting of the integration of all of these parts. Our research plan for the next three
years involves expansion of all components within the current design, and new thrusts in the areas of
knowledge acquisition, explanation, and interface architecture.

REFERENCES

1. Bobrow, Robert, and Bonnie Webber, "PSI.KLONE: Parsing and semantic interpretation in the
BBN natural language understanding system," in Proceedings of the 1980 Conference of the
Canadian Society for Computational Studies of Intelligence, CSCSI/SCEIO, May 1980.

2. Bobrow, Robert, and Bonnie Webber, "Knowledge representation for syntactic/semantic
processing," in Proceedings of the National Conference on Artificial Intelligence, AAAI, August
1980.

3. Brachman, Ronald, A Structural Paradigm for Representing Knowledge, Bolt Beranek and
Newman, Inc., Technical Report, 1978.

4. Brown, John Seely, and Richard Burton, "Multiple representations of knowledge for tutorial
reasoning," in Daniel Bobrow and Allen Collins (ed.), Representation and Understanding,
Academic Press, 1975.

5. Carbonell, Jaime, and Allan Collins, "Natural semantics in artificial intelligence," in Proceedings
of the Third International Joint Conference on Artificial Intelligence, IJCAI, 1973.

6. Codd, Edward, et al., Rendezvous Version 1: An Experimental English Language Query
Formulation System for the Casual User of Relational Data Base Systems, IBM San Jose,
Technical Report, 1978.

7. Hendrix, Gary, et al.. "Developing a natural language interface to complex data," ACM
Transactions on Database Systems 3, (2), 1978, 105-147.

52 COOPERATIVE INTERACTIVE SYSTEMS

8. Kernighan, B. W., and J. Mashey, "The UNIX programming environment," Software-Practice and
Experience 9, 1979,1-15.

9 Lingard. Robert W., "A software methodology for building interactive tools." in Droceedings of

the Fifth International Conference on Software Engineering. 1981.

10. Mark, William, "Rule-based inference in large knowledge bases." in Proceedings of the National

Conference on Artificial Intelligence, American Association for Artificial Intelligence, August
1980.

11. Mark, William, "Use of database organization in the Consul system," Joint
SIGART/SIGPLAN/SIGMOD (ACM) Publication, February 1981.

12. Mashey. J. R., "Using a command language as a high-level programming language," in
Proceedings of the Second International Conference on Software Engineering, pp. 169-176,
1976.

13. Irene Persson, Consul Note 8: "Process Script Definition of a Calendar System," 1980. ISI.

14. Rothenberg, J., "On-line tutorials and documentation for the SIGMA Message Service." in

Proceedings of the National Computer Conference, AFIPS, May 1979.

15. Schwartz, Jules I., "Construction of software: Problems and practicalities," in Ellis Horowitz

(ed.), Practical Strategies for Developing Large Software Systems, Addison Wesley, 1975.

16. Stotz, R., R. Tugender, 0. Wilczynski, and D. Oestreicher, "SIGMA: An interactive message

service for the Military Message Experiment," in Proceedings of the National Computer
Conference, AFIPS, May 1979.

53

6. COMMAND AND CONTROL GRAPHICS

Research Staff: Consultant: Support Staff:
Richard Bisbey II Danny Cohen Victor Brown
Benjamin Britt Linda Sato
Dennis Hollingworth
Gertrud Mellstrom
Pamela Norton
Richard Shiffman

6.1 PROBLEM BEING SOLVED

As more C2-related information is maintained in computer-based form, computers will need to take
more active roles in presenting that data. Computer-generated graphics must supplant volumes of
batch-generated printer listings to allow the military to deal with the large quantities of information
available and make timely decisions. For example, online computer decision aids will be needed to
calculate and graphically display the potential outcomes of alternative strategies. Such a capability
must be available in normal, as well as crisis, mode, with particular atter'tion paid to mobility and
survivability in crisis mode.

To meet future military needs, command and control graphics systems of the future will need to
have the following attributes:

" They must be adaptable to the computation and communications resources that are
available. The unpredictability of the communications bandwidth available and the
location of and accessibility to computational resources during a crisis situation, together
with the need to optimize use of available resources to meet the situation, require that the
graphics system be tailorable to a wide variety of processor/communications
combinations.

" They must be flexible to adapt to and utilize different types of display devices. A wide
variety of display devices will be available, ranging from large screen color displays in
command centers to more modest hand-held displays in the field. A graphics system
must accommodate all of these device types and be capable of displaying the graphics
output of any available application program.

" They must be usable in a transnetwork environment. Command centers, host computers,
and users will be interconnected by digital networks that will include terrestrial, radio, and
satellite communications. Graphics systems for command and control must be designed
to operate in this environment.

" They must support the creation of pictures for use outside the immediate application
environment. Graphics systems for command and control must provide the capability for
storing an application-generated graphics picture in a "graphics file," transmitting the file
over a network, and incorporating that picture in another application program, all in a
display-device-independent fashion.

54 COMMAND AND CONTROL GRAPHICS

6.2 APPROACH

To satisy the above requirements, ISI has developed a distributable architecture for graphics [1].
The architecture allows a graphics system to be constructed as a series of isolatable functions that
are pairwise connected by any available intraprocess/interprocessor communications mechanism
including telephone, radio. or digital network/internetwork links. Information is communicated
between functions using a uniform protocol. The architecture permits a wide variety of configurations
ranging from clustering all functions on a single host to distributing each to a different host. Included
within the architecture are functional modules that allow the creation of sequential files containing
display-device-independent graphics and the incorporation of such files into an existing application's
graphics.

ISI has also developed a set of generic graphics primitives (Graphics Language [2]) by which
pictures can be described and interacted with at the application level. The particular graphics model
used for the language was based on structuring pictures as sets of subpictures which are absolute-
transformed segments, as defined by Newman and Sproull [3]. The graphics primitives are
transformed by the Graphics System at program execution time into specific operations and display
modes appropriate to the device to which the system is connected.

6.3 PROGRESS

Graphics System

In September 1976, Graphics Language was defined. IS! delivered a nondistributed version (1.0) of
the graphics system in January 1977, and a distributed version (2.0) in June 1979.

During this reporting period, implementation of all remaining architectural features for the Level 2
distributed system was completed. A display-device-independent graphics file format was defined
along with Graphics Language commands for writing segments to or reading segments from
externally stored graphics files. Major functional units were added to the graphics system to perform
the graphics file reading/writing operations and the necessary transformations between internal
protocol and external file representations. The other major architectural feature completed was the
automated connection of functional units when the graphics system was used in a distributed,
multiple-host configuration. A graphics connection protocol was defined for the ARPANET and
network server programs were written. ARPANET connection functions were then added to the
graphics system. Also during this period, the graphics system was expanded to include support for
Interlisp-1O and Pascal languages, and Hewlett Packard HP-9872A and Advanced Electronic Design
512 display devices. Two reports were published describing Graphics Language [2] and the Graphics
System architecture [1].

Other Applications

This period also saw the completion of work on Situation Display. Situation Display is a cooperative

effort between ISI and several other DARPA contractors to produce a natural language information
retrieval system for distributed databases producing graphics responses. ISI has been responsible
for the graphics display portion of the system. During this period, tSI added a graphics file output
capability to Situation Display allowing displayed pictures to be saved on disk for later review.
Situation Display was also extended to optionally display shipping-lanes on a geographic plot. as well
as to allow a tabular display of force data.

PROGRESS 55

Finally, a general-purpose graphics file display program was written. The program is menu-driven
and provides a friendly interface allowing a novice user to configure the graphics system and
sequentially display graphics files.

6.4 IMPACT

The principal impact of this work is in developing a graphics system architecture that
accommodates system decentralization and distributed graphics data storage. Such a system
architecture will facilitate graphics/user environments of widely varied display, storage, and
processing capabilities. An example of such a system is a ship-based graphics system that must
interact with and possibly supplement one or more land-based graphics systems associated with
large computational environments. The graphics system is intended to provide a sufficiently rich
graphics capability to support a wide variety of applications and terminal types.

6.5 FUTURE

Future research and development will focus on the following two areas:

" Design of a highly portable graphics system "back-end" capability.
" Design and development of a computer-based briefing aid capability.

Highly Portable Back-end

To date, the Graphics System has been implemented on PDP-10s and 20s operating the TENEX
and TOPS-20 operating systems, and PDP-11/70 Remote Site Modules operating the UNIX operating
system, all of which are large and expensive mainframe computers. An analysis of the Graphics
System shows that its performance is largely limited by the channel bandwidth between the last
Graphics System function, the Display Order Generator (DOG), and the display device. Users who do
not have a high bandwidth channel between the display device and the host on which the DOG
function runs (such as those connected via TTY or ARPANET links) obtain very poor display
performance.

With the recent availability of very powerful, very small 16-bit microprocessors such as the Motorola
MC68000, it is both practical and desirable to migrate Graphics System functions to such a processor.
Two major benefits accrue. First is the small physical size. Unlike a PDP-1O or PDP-1 1 computer that
occupies one or more equipment racks, a microprocessor-based system may occupy one or two 16x9
inch cards, small enough to be packaged with the display device. This allows portability of operation
while retaining maximum graphics display performance. A second major benefit is cost savings. A
microprocessor-based system can provide the same functional capability of a mainframe host at a
fraction of the cost.

Briefing Aid

Based on experiments using our graphics file display utility program, ISI will develop a Briefing Aid
application program. The Briefing Aid will permit the creation and presentation of briefings using
computer graphics rather than conventional film media. The online graphics output of any command
and control application program, such as Situation Display, will be readily incorporated into a briefing.
Briefing slides will be displayed sequentially under the control of a separately prepared briefing script

56 COMMAND AND CONTROL GRAPHICS

or will be displayed individually under direct briefer control. The distributability and display-device-
independent properties of the Graphics System will permit briefings to be given anywhere a display
terminal can be located, such as in a commander's office or at a mobile headquarters.

REFERENCES

1. Bisbey. R., I, and D. Hollingworth. A Distributable, Display-Device Independent Vector Graphics

System for Command and Control, USC/Information Sciences Institute, RR-80-87, 1980.

2. Bisbey, R., II, D. Hollingworth, and B. Britt, Graphics Language, USC/Information Sciences
Institute, TM-80-18, 1980.

3. Newman, W. M., and R. F. Sproull, Principles of Interactive Computer Graphics, second edition,
McGraw-Hill, 1979.

57

7. INTERNETWORK CONCEPTS RESEARCH

Research Staff: Research Assistants: Support Staff:
Jon Postel Alan Katz Linda Sato

Danny Cohen Paul Mockapetris
Carl Sunshine
Bernard Berthomieu
Suzanne Sluizer
Greg Finn

7.1 PROBLEM BEING SOLVED

This project explores the design and analysis of computer-to-computer communication protocols
in multinetwork systems. The project has three task areas: (1) Analysis, (2) Applications, and (3)
Design and Concepts. Protocol Analysis is concerned with the correctness of protocols, in particular
Transmission Control Protocol (TCP). Protocol Applications is concerned with the development of
demonstration internetwork applications, in particular a prototype computer message system.
Protocol Design and Concepts is concerned with the development of network and transport
protocols, in particular the Internet Protocol (IP) and TCP, and seeks new approaches in the
application of packet switching to communication problems.

7.2 GOALS AND APPROACH

The long-term goals of this research are to provide appropriate and effective designs for the
primary user-service applications in the internetwork communication environment. The designs will
be based on a set of host- and gateway-level protocols that provide the full range of service
characteristics appropriate to a wide range of applications. These protocols will have to be specified
and analyzed to ensure their correct operation.

Our approach is to pursue in parallel the analysis, application, and design of protocols. The
interaction of these activities provides valuable insights into problems and potential solutions.

We have identified several program and protocol analysis tools and techniques that show promise
of aiding our study of protocols. We will explore the value of these tools and techniques by applying
them to a series of example protocols. The example protocols incorporate features of the TCP.

Computer mail is the application we will use as a focus for demonstrating internetwork service.
Within this application area we are developing a multinetwork, multimedia mail service. Our interest is
primarily in the communication mechanisms, rather than the user interfaces. We are developing a set
of procedures and data structures to be used in multimedia mail, and have embodied these in a
message processing module.

We have assisted in the design of several protocols in the internet family. The areas of addressing,
routing, and multiplexing are particularly subtle and require careful attention. We have focused
attention on these areas and have explored many options in technical discussions and memos. Our

58 INTERNETWORK CONCEPTS RESEARCH

approach is to develop an understanding of these technical issues and to advocate the inclusion of
general-purpose supporting mechanisms in the protocol specifications.

7.3 SCIENTIFIC PROGRESS

Protocol Analysis

Our work this year has been divided into two major areas: a wide survey and evaluation of potential
methods for formal specification and verification of protocols, and a deeper experimentation with one
particular approach.

In the first area, we have completed an extensive survey of the literature, and experimented briefly
with the methods found. The survey and experimentation have allowed us to understand the
relationship between different methods, classify them into appropriate categories, and evaluate their
relative merits. Specification categories include finite state automata, abstract machines, formal
languages, sequencing expressions, Petri nets, buffer histories, abstract data types, programs, and
temporal logic. Verification methods include state exploration, symbolic execution, structural
induction, inductive assertions, and design rules.

Abstract machines appear to be a promising specification method because of their
understandability and the availability of automated analysis tools. However, the need to invent and
manipulate an explicit state may be viewed as a disadvantage, leading to consideration of sequencing
expression or buffer history methods which avoid explicit state notions. Other difficulties in treating
progress and liveness properties are addressed by temporal logic methods.

The results of this survey are presented in [181 and [38].

Our in-depth experiments have focused on combining the understandability of abstract machine
specifications with the analytical power of an automated abstract data type system called Affirm
developed by the ISI Program Verification project (see their writeup in this report, chapter 2). A
variety of protocols have been treated, from the simple "alternating bit" protocol [13,35] and
"selective repeat" protocol [36], to a more sophisticated window, based data transfer protocol [24],
and the "three-way handshake" connection establishment protocol (used in TCP). Finally, a simple
transport protocol service including data transfer, flow control, connection establishment, and
multiplexing capabilities has been specified [14].

The formal specification of these protocols has been a significant accomplishment in its own right,
and has forced us to clarify a number of ambiguous features about the protocols. In addition, we
have developed verification methods for determining the properties of a single protocol specification
and for demonstrating the consistency between a protocol specification and a completely
independent service specification (i.e., showing that the protocol provides the intended service). This
verification work makes heavy use of the theory and automated tools in the Affirm system and is still
under way.

Liveness properties present special difficulties for abstract data type models, and we have obtained
some interesting results by generalizing decreasing measure function techniques to show eventual
termination and using preconditions to show deadlock-freeness [35,36].

SCIENTIFIC PROGRESS 59

Protocol Applications

We completed the design for an internet multimedia message system. Separate specifications
define the overall structure and control format [3,26], and the body structure and format [27,30]. The
focus in this design is the communication of messages in a machine-oriented internal representation
which provides for carrying data of several media including text, voice, facsimile, and graphics.
Significant progress was made on the implementation of a prototype message processing module
(MPM) following this design.

The Multimedia Mail System

This message system model takes the view that the message service can be divided into two
activities: message reading and composition, and message delivery. Reading and composing
messages are interactive activities that involve a user interface process (UIP). The message delivery
activity may be carried out by background processes, MPMs. Our work concentrates on message
delivery and leaves the development of sophisticated user interfaces to other projects (e.g.,
Cooperative Interactive Systems--see chapter 5).

The internetwork multimedia message system is concerned with the delivery of messages between
MPMs throughout an interconnected system of networks. It is assumed that many types of UlPs will
exist and that the message delivery protocol is implemented in an MPM process. The MPMs
exchange messages by establishing full duplex communication and sending the messages in a tightly
specified format. The MPMs may also communicate other information by means of commands.

A user writes a messa-e by interacting with a UIP. He may use several commands to create various
fields of the message and may invoke an editor program to correct or format some or all of the
message. Once the user is satisfied with the message, he sends it by placing it in a data structure
shared with the MPM.

The MPM takes the data, adds control information to it, and transmits it. The destination may be a
mailbox on the same host, a mailbox on another host in the same network, or a mailbox in another
network. The MPM calls on a reliable communication procedure to communicate with other MPMs.
In most cases, this is a transport level protocol such as the TCP. The interface to such a procedure
typically provides calls to open and close connections and to send and receive data on a connection.
The MPM receives input and produces output through data structures that are produced and
consumed respectively by UlPs or other programs. The MPM transmits messages, including control
information, in a highly structured format using typed data elements in a machine-oriented yet
machine- independent data language.

Our work on this system this year included the completion of a draft MPM implementation which
resulted in many small changes in the original design and specification. The second specification
was completed [26], and the second MPM implementation was begun.

The Interim Mail System

In this mail system the goal is simply to bridge the gap between the different interprocess
communication systems presented by the Network Control Protocol (NCP) and the TCP host-to-host
protocols. Our approach is to create a mail relay process on a host that has implemented both NCP
and TCP [32]. This mail relay process will accept mail from either NCP or TCP sources and relay it to

'II

60 INTERNETWORK CONCEPTS RESEARCH

either NCP or TCP destinations. For the mail relay process to work, the control protocol of the mail
procedure must be slightly elaborated to carry additional address information. Work on this task
began very late in the year. We did produce a specification of the new procedures [33]. and we also
began the implementation of the relay process.

Protocol Design and Concepts

We contributed to and edited two editions of the Internet Protocol and the Transmission Control
Protocol Specifications [7,8,10,11]. The Internet Protocol is a datagram-style gateway-level protocol
that provides the addressing. routing, and fragmentation/reassembly functions in the internetwork.
The Transmission Control Protocol is a connection-style host-level protocol that provides end-to-end
reliable ordered delivery of streams of data. These specifications [10,11] have been adopted as the
basis for a DoD internetwork protocol standard.

In addition we have produced specifications for the higher level protocols and applications: telnet,
file transfer, and user datagrams [21,22,28].

We have contributed to general planning of the internet communication system, in particular, the
identification and discussion of several issues, including addressing, multiplexing, and routing.
Published papers on these topics are [4,5,19,37]. We also wrote Internet Experiment Notes (lENs)
and made presentations at Internet Working Group meetings on these topics [2,6,15,16,29].

We participated in the Internet Working Group and provided support for the group's activities by
producing meeting agendas and minutes, and other routine reports (1,9,12,20,31,34]. We also
coordinate the monthly report for the ARPA Internet Program.

7.4 IMPACT

Protocol Analysis

The use of more precise specification methods will facilitate cheaper, faster, and more reliable
implementation of the ever-increasing number of communication protocols in DoD computer
networks. The research described here has already had some impact on major protocol development
projects sponsored by the Defense Communications Agency and by national and international
standards groups. The previously widespread informal narrative specification methods are being
augmented by more formal specifications, particularly of state transition or abstract machine variety.

The development of protocol verification techniques also promises to improve reliability and reduce
debugging time in implementing network systems. By allowing analysis of protocol designs prior to
actual implementation, problems are detected earlier. Esoteric bugs that would be difficult to find
with ordinary testing and debugging may also be revealed by formal verification. Several such bugs
have already been discovered and eliminated from the TCP.

This research program has also had an impact by influencing other government.sponsored
research projects, particularly in the area of program verification, toward developing analysis
techniques that are applicable to computer networks. In cooperation with the Program Verification
project. we hosted a workshop in July 1980 attended by personnel from over a dozen other projects
where applicability of general methods to network problems was discussed. Many of these projects
have followed up with work on protocols.

IMPACT 61

Protocol Applications

Computer mail is the most significant use of the new communication capability provided by packet
switching networks. Our work to extend the range and capabilities of computer mail will have
important consequences for DoD.

The potential for multimedia communication in a computer-assisted environment is great. The
ability to communicate diagrams or maps and then to talk about them will increase the effectiveness
of remote communication tremendously. The combination of text, speech, graphics, and facsimile
into a common framework and data structure may have substantial impact on other applications as
well.

The power of a communication system is directly related to the number of potential communicants.
For computer mail, this means that the power of a system is related to the number of people who have
access to that system. To have access to a computer mail system requires the use of compatible
components: terminals, programs, and protocols. Our work on protocols and programs will increase
the power of computer mail by enlarging the set of compatible components.

Protocol Design and Concepts

The selection of the IP and TCP protocols by the DoD as the basis for a DoD internetwork protocol
standard shows the impact of the ARPA community's work on DoD communication systems.

Through our participation in discussions at the Internet Working Group meetings, and in technical
meeting with other contractors we have successfully influenced the development of many protocols
and protocol features.

7.5 FUTURE WORK

Protocol Analysis

We plan to conclude our work in protocol verification in the next 18 months. We expect to report
on the experience with the verification systems used and the result of attempting to verify TCP.

Protocol Applications

We will continue our experimental development of an internet multimedia system. In the next year
we will begin to experiment with the actual entry and delivery of multimedia messages.

We will continue our work on the text mail relay system, which we expect to complete within the
next year.

Protocol Design and Concepts

We will continue our contributions to the development of internet gateway level (IP) and host level
(TCP) protocols. In particular, we will continue to support the Internet Working Group.

We will continue to raise important issues for discussion in the Internet Working Group and to seek
out and develop new opportunities to utilize the capabilities of packet-switched communication
systems.

62 INTERNETWORK CONCEPTS RESEARCH

REFERENCES

1. Postel. J., Internet meeting notes- 10, 11, 12, and 13, September 1979, IEN-121, USC/Information
Sciences Institute, October 1979.

2. Cohen, D., On addressing and related issues (or. Fuel for a discussion), USC/Information
Sciences Institute, IEN-122, October 1979.

3. Postel, J., "An internetwork message structure," Sixth Data Communication Symposium,
ACM/IEEE, November 1979, pp. 1.7.

4. Cohen, D., and J. Postel, "On protocol multiplexing," Sixth Data Communication Symposium,
ACM/IEEE, November 1979, pp. 75-81.

5. DiCiccio, V., J. Field, E. Manning, and C. Sunshine, "Alternatives for the interconnection of public
packet switching data networks," Sixth Data Communication Symposium, ACM/IEEE, November
1979, pp. 120-125.

6. Cohen, D., Summary of the ARPA/ETHERNET community meeting, USC/Information Sciences
Institute, IEN. 126, November 1979.

7. Postel, J., DoD standard Internet Protocol, USC/Information Sciences Institute, IEN-123,
December 1979.

8. Postel, J., DoD standard Transmission Protocol. USC/Information Sciences Institute, IEN-124,
December 1979.

9. Postel, J., Assigned numbers, USC/Information Sciences Institute, IEN-127, RFC 762, January
1980.

10. Postel, J., "DOD standard Internet Protocol," IEN 128, RFC 760, USC/Information Sciences
Institute, NTIS ADA079730, January 1980. Appears in Computer Communication Review,
Special Interest Group on Data Communications, ACM, 10 (4), October 1980,12-51.

11. Postel, J., "DOD standard Transmission Control Protocol," IEN 129, RFC 761, USC/Information
Sciences Institute, NTIS ADA082609, January 1980. Appears in Computer Communication
Review, Special Interest Group on Data Communications, ACM, 10 (4), October 1980, 52-132.

12. Postel, J., Internet meeting notes - 4, 5, and 6 February 1980, USC/Information Sciences
Institute, IEN-134, February 1980.

13. Sunshine, C., Axioms for the Alternating Bit Protocol, USC/Information Sciences Institute,
Affirm Memo-17-CAS, February 1980.

14. Schwabe. D., Transport protocol service specification, Affirm Memo 19, March 1980.

15. Sunshine, C., Addressing mobile hosts in the ARPA internet environment, USC/Information
Sciences Institute. IEN-135, March 1980.

63

16. Cohen, D., On holy wars and a plea for peace, IEN-137, USC/Information Sciences Institute,
April 1980.

17. Postel, J.. Time server, USC/Information Sciences Institute, IEN.142, Apri! 1980.

18. Bochmann, G.. and C. Sunshine. "Formal methods in communication protocol design." IEEE
Transactions on Communication, COM-28, 4, April 1980.

19. Postel, J., "Internet protocol approaches," IEEE Transactions on Communication, COM-28, 4,
April 1980.

20. Postel. J., Internet meeting notes - 14 and 15 May 1980, USC/Information Sciences Institute, IEN-
145, May 1980.

21. Postel. J.. Telnet protocol specification, USC/Information Sciences Institute, IEN-148, RFC 764,
June 1980.

22. Postel, J.. File transfer protocol specification, USC/Information Sciences Institute, IEN-149, RFC
765. June 1980.

23. Plummer. W.. and J. Postel, TCP JSYS calling sequences, Bolt Beranel, and Newman, IEN-150,
June 1980.

24 Thompson. D.. A behavioral axiomatization of the Stenning data transfer protocol, Affirm Memo
16. USC/Information Sciences Institute, June 1980.

25. Sunshine. C., Problem areas in protocoi specification and verification, ISI internal memo, July
1980.

26 Postel, J.. Internet message protocol, USC/Information Sciences Institute, IEN-1 13. RFC 759,
August 1980.

27 Postel, J.- A structured format for transmission of nu!timedia documents, USC/Information
Sciences Institute, RFC 767, August 1980.

28 Postel, J , User datagram protocol, USC/Information Sciences Institute, RFC 768, August 1980.

29. Cohen. D., Controlled routing tn the Catenet environment, USC/Information Sciences Institute,
IEN-156. September 1980.

30. Postel, J.. Rapicom 450 facsimile file format. USC/Information Sciences Institute, RFC 769,
September 1980.

31. F-t,;. J., Assigned numbers, USC/Information Sciences Institute, RFC 770. September 1980.

32. Cerf, V.. and J. Postel, Mail transition plan, Advanced Research Projects Agency, RFC 771,
September 1980.

64 INTERNETWORK CONCEPTS RESEARCH

33. Sluizer, S., and J. Postel, Mail transfer protocol, USC/Information Sciences Institute, RFC 772,
September 1980.

34. Postel. J., Internet protocol handbook table of contents, USC/Information Sciences Institute.
RFC 774, October 1980.

35 Berthomieu, B., Proving progress properties of communication protocols in Affirm,
USC/Information Sciences Institute, Affirm Memo.35-BB, October 1980.

36. Berthomieu, B., Selective repeat protocol: Axiomatization and proofs, USC/Information
Sciences Institute, Affirm Memo-36-BB, October 1980.

37. Sunshine, C., "Current trends in computer network interconnection," Advances in Data
Communication Management, T.A. Rullo (ed.) Heyden, 1980.

38. Sunshine, C., "Formal modeling of communication protocols," in Proceedings of the Conference
on Communication in Distribute' Data Processing Systems, Technical University Berlin, January
1981. Also USC/Information Sciences Institute RP-81-89, March 1981.

65

8. NETWORK SECURE COMMUNICATION/
WIDEBAND COMMUNICATION

Research Staff: Support Staff:
Stephen Casner Jeff LaCoss
William Brackenridge Gertrud Mellstrom
Danny Cohen Robert Parker
E. Randolph Cole Linda Sato
Eric Mader Jerry Wills

8.1 INTRODUCTION

The ISI Network Secure Communication (NSC) project has been instrumental in the development of
protocols and real-time systems to transmit packetized voice over the ARPANET, both in point-to-
point conversations and multisite conferences. The project is now broadening its scope as the
Wideband Communication (WBC) project, which will develop the technology required for the future
support of thousands of simultaneous conversations being transmitted over a wideband satellite
channel in the internetwork environment. It will advance packet voice from a demonstration program
to an experimental system continuously available for use in the transaction of normal daily business.

While the NSC project concentrated on voice communication, the WBC project will work on
integrated communication of several media, including voice. The goal is to develop real-time
multimedia teleconferencing using wideband packet-switched networks. In addition to voice, the
initial emphasis will be on the development of a video bandwidth compression system which operates
in real time and takes advantage of the ability of a packet-switched network to accommodate varying
bandwidth requirements.

8.2 PROBLEM BEING SOLVED

The military communicates vast amounts of information in several forms, including voice, text
messages, and graphs. To a large extent, these various forms are not integrated; in fact, frequently
they are communicated over independent networks. To improve the survivability of critical
communication, integration is necessary to allow any part of the available communication bandwidth
to be used for any of the types of data. Since the mix of data varies dynamically, only a fully
integrated communication system can ensure that the most essential information can always be
communicated.

A good way to integrate the communication of voice, data, and other media is with a packet
switched network. A study by the Network Analysis Corporation [2] showed that packet switching
technology with an integrated voice/data network is the most economical way to meet DoD
communication needs, as compared to circuit switching, fast circuit switching, and hybrid switching
over a wide range of parameters. A further advantage of digital packet switching for voice
communication is that it can be secured to any degree desired, unlike analog voice communication.

66 NETWORK SECURE COMMUNICATION/WIDEBAND COMMUNICATION

The first purpose of the Wideband Communication Program is to find the effects of scale on a
packet voice communication system. The ARPA NSC effort has demonstrated that it is feasible to
transmit real-time, secure speech through a packet network. However, this was done using
minicomputers with attached high-speed signal processors; such systems are flexible but relatively
expensive, so only a few exist. Advances in VLSI (very large-scale integration) technology, combined
with sufficient experience in packet speech protocols and software, now make it possible to create a
more economical voice terminal. Current ARPA plans call for the production of 10 to 100 such
devices.

Likewise, the bandwidth of previously available packet networks has limited the number of
simultaneous voice conversations to just a few. With the advent of the wideband satellite network, it
will now be possible to simultaneously transmit about 20 uncompressed voice streams or perhaps
1000 narrowband voice streams. Therefore, it is now time to test packet speech in an environment
which more closely resembles future real-world applications, an environment in which the packet-
switching technology can take advantage of the bursty nature of speech to demonstrate its efficiency
in statistical multiplexing.

If packet switching is to meet the total DoD communication requirement, then it must also expand
to support media which have not been accommodated in the past. A prime example is real-time. full-
motion video. The large bandwidth required by the video signal will make it as difficult to transmit
video across the wideband satellite network as it was to transmit voice across the lower bandwidth
ARPANET. This will again restrict communication to one or two channels, but it is expected that
packet-switched networks will continue to grow in capacity so that multiple channels of video will be
be feasible in the not-too-distant future.

The switch to satellite communication introduces some new problems that must be investigated,
specifically, increased delay and higher error rates. New transmission protocols must accommodate
these problems and at the same time take advantage of added capabilities, such as broadcast
transmission.

8.3 GOALS AND APPROACH

The ISI Wideband Communication project has two primary goals:

1. To develop the technology required to support future packet speech systems with
thousands of voice channels, beginning with an experimental facility accessible by a
much broader user community than that of the first demonstration systems.

2. To explore new modes of packet communication made possible by the increase in
bandwidth of the satellite network over that of previous packet networks, and to
investigate how the added bandwidth could benefit old modes of communication.

To work toward these goals, the WBC project's efforts cover several areas. Specifically, the project
is working to:

* Continue the design and development of the protocols required to support
communication in the Wideband Network as part of the larger ARPA internet
environment. Included are the protocol extensions required to support multimedia
conferencing with voice, video, graphics, and other data.

* Interface the Wideband Network to the Switched Telephone Network (STN) to promote
the widespread use of packet voice. The WBC project has designed and developed an

GOALS AND APPROACH 67

STN interface board which will be distributed to the Wideband Network sites. ISI and
others will integrate the STN interface with voice terminal equipment to make the
Wideband Network accessible to more users on a continuous experimental basis.

" Design and implement the hardware and software required for the transmission of
packetized narrowband video over the satellite. The goal will be to build a system
capable of real-time transmission of color video with moderate motion.

" Investigate the performance of the satellite network by itself and in combination with
terrestrial networks to determine how protocols should be tuned for various network
conditions and types of data.

The STN interface will expand the packet speech user community by providing access via the
telephone network using dial-in and dial-out facilities. The interface utilizes a wideband speech
vocoder because it functions well with telephone-quality input and its cost is significantly lower than
that of narrowband vocoders. The low cost will allow a reasonable number of vocoders to be
supplied, and telephone access will enable more people to use them. This system will allow packet
speech to be used as an on-going experiment by a large number of people at the participating sites; it
will provide experience with a more heavily loaded system than one used primarily for
demonstrations.

The STN board has been designed to interface directly with the Lincoln Laboratory Voice Terminal
because several of the latter will be fabricated and distributed to the Wideband Network sites. ISI will
likewise fabricate and distribute STN interfaces so that each site can 'set up telephone access
facilities, allowing the Wideband Network to be tested with routine cross-country telephone calls.

The objective of the WBC project's video experiments is to investigate and demonstrate
transmission of video data over a packet-switched network for the first time. The ultimate goal will be
to build a system capable of transmitting color video with moderate motion in real time at a data rate
of 1.5 megabits per second. The word "video" means television camera images at frame rates
ranging from one frame or less per second (frame-grabbing) to 30 frames per second (full motion).
Monochromatic video will be used initially, with color to be used later.

The Wideband Network provides an opportunity to utilize novel video bandwidth compression
techniques which have been developed but not utilized because they are not well matched to fixed-
rate transmission channels. Some of the best video bandwidth compression algorithms available
today generate compressed data at a variable rate. A packet-switched channel allows the statistical
multiplexing of several variable rate streams to use the available bandwidth more efficiently.

The approach for video bandwidth compression algorithms will be to evaluate present algorithms
and adapt them to the wideband channel, not necessarily to develop new ones. The object is to
select the best current algorithm or family of similar algorithms, shape it to best fit the wideband
channel, and implement it to run in real time.

In addition to the voice and video experiments described above, the WBC project will investigate
the transmission of nonreal-time data, such as large files, on the Wideband Network. Such data will
be sent in datagram (contention) packets which fill in the bandwidth unused by the streams reserved
for voice and video traffic. It is the use of one hybrid network for both kinds of data which provides
the economy expected for the packet network.

To gain the full benefit of the large bandwidth of the satellite network, the file transfer protocol

parameters will need to be tuned to fit the performance of the Wideband Network and the other

68 NETWORK SECURE COMMUNICATION/WIDESAND COMMUNICATION

networks involved in accessing it. For example, if the Internet Transmission Control Protocol (TCP) is
used, it will require a huge window to allow several packets to be outstanding at a time. Another
modification would be to return negative acknowledgments (NAKs) for packets which arrive with
checksum errors in the data but not in the header. Since the Wideband Network will have a relatively
high error rate and a long delay, returning NAKs could cut down the amount of time wasted waiting
for timeouts to expire. These protocol issues and others will require investigation before the
Wideband Network can be used effectively.

8.4 PROGRESS

8.4.1 Voice Authentication

ISI has implemented a real-time version of the text-independent Voice Authentication System (VAS)
developed at the Speech Communications Research Laboratory (SCRL) by John Markel [3]. The
system was demonstrated by ISI at the NSC contractors' meeting at SRI International in October 1979.
The VAS is included as an integral part of the "SPEECH" conferencing system which runs on ISI's
PDP11/45 and FPS AP-120B hardware under the EPOS operating system. It functions as an adjunct
to the voice bandwidth compression algorithm (Linear Predictive Coding, or LPC).

With the VAS, a conference participant at ISI can authenticate any participant in the conference,
both local and remote, using profile vectors compiled during training sessions. Because the system is
text-independent, the participant need not be aware that his speech is being collected, either for
training or authentication. As currently implemented, the VAS is trained on an unconstrained
segment of each user's speech lasting about 10 minutes. This speech is analyzed to form an LPC
parameter file, which is then processed by a FORTRAN program to create the profile, which is then
stored on a disk.

To authenticate a speaker, the system processes successive segments of 300 voiced LPC frames
(about 10 seconds of speech), then compares the statistics for each segment against a profile
selected by the user. This results in a measure of the speaker's distance from the profile during each
segment. The user is presented with a running tally of yes/no decisions based on a preset threshold
for the distance.

The real-time VAS uses quantized LPC parameters, since it must handle speech which has been
transmitted across the ARPANET. Although the differences have not been thoroughly measured, its
performance seems fairly close to that of the original SCRL version, which uses unquantized
parameters. The real-time VAS has given excellent results in tests to date.

8.4.2 N'P-iI and ST Protocols

The second-generation Network Voice Protocol (NVP) for the transmission of packet speech has
been designed. The voice-specific control and data protocol, NVP-l, is used in conjunction with a
new stream transmission protocol, ST, which provides control of reserved-resource streams on those
networks which support them. Several parties collaborated in the design of these protocols, but
NVP-11 was written primarily by ISI, and ST was written primarily by Lincoln Laboratory.

PROGRESS 69

NVP-11 is designed to replace the first NVP which has been operational since 1974. Its main
improvements over NVP-I are in the following areas:

" Operation in the ARPA internetwork environment.
" Improved conference facilities.
" Provision of the "handles" necessary to achieve high efficiency of intermediate networks

and utilization of special features like stream-setup, when necessary, and broadcasting.
" More flexible control to allow future extensions such as the support of multimedia

communication.

NVP-II, like NVP.l, is divided into a Control Protocol (CP) and Voice Data Protocol (VP).

The module which implements the control protocol is called the CM. Its main objectives are (i)
establishing and monitoring the communication paths, and (ii) supporting a convenient user
interface. The control functions are performed by exchanging "control instructions" between the
participating CMs. These instructions are referred to as control-tokens.

The voice data protocol is basically as defined for NVP-I, and is not expected to be intrinsically
changed. All the forthcoming acoustic improvements of any voice digitization algorithm should apply
equally to both protocols. However, NVP-11 packages the voice-data in a different way than NVP-l
does.

NVP-11 supports two main communication modes:

1. Point-to-Point (PTP) full-duplex, two-party communication, and

2. Multi-Destination "Half-Duplex" (MDHD) communication (conference).

NVP-II, unlike NVP-I, is symmetric in the sense that in a two-party call, the distinction between the
CALLER and the CALLEE does not exist, and in conference there is no information regarding whether
a participant called the conference or vice versa. On the other hand, the supporting communication
protocol, ST, is based on asymmetric full-duplex connections with the notion of "direction" (i.e.,
CALLER and CALLEE) which is maintained throughout the entire life of the connection.

8.4.2.1 Implementation in SPEECH

The WBC project has implemented the ST and NVP-11 protocols to support point-to-point voice
communication using ISI's SPEECH system running under EPOS on the PDP1 1/45 and FPS AP-120B
hardware. In the current configuration used for protocol debugging, the ARPANET functions directly
as a local network accessed by the ST module. In the future, this will be replaced by a connection
through a local access network and gateway to the wideband satellite network.

The implementation consists of modules:

1. The ST dispatcher module with an ARPANET interface.
2. The NVP-I1 control protocol module.
3. The NVP-11 data protocol module.

The first two modules are written in the programming language "C" to increase the capability of
sharing this code with other implementations. The NVP-11 implementation currently handles only
point-to-point connections, but in FY81 it will be extended to support multiple-site conferences.

70 NETWORK SECURE COMMUNICATION/WIDEBANO COMMUNICATION

In order to enable the SPEECH system to interoperate with the PCM vocoder in the STN interface,
the PCM algorithm has been programmed in the FPS AP120-B signal processor. This PCM will also
be used to communicate over the Wideband Network with other voice terminals at ISI and Lincoln
Laboratory.

8.4.3 Switched Telephone Network Interface

The WBC project has designed an interface to allow connection of voice terminals to the
commercial Switched Telephone Network (STN). The interface will allow the packet speech system to
be called from any pushbutton telephone. Conversely, the system will be able to dial out to any
telephone. In this manner, a local access scheme (the telephone network) can be provided without
additional cost or effort. The interface is built on a 7-in. square circuit board which plugs directly into
a Lincoln Laboratory Voice Terminal. A diagram of the interface's functional components is shown in
Figure 8-1.

4-wire
Phone Analog
(Vn A) Filters PCM Codec

Frame R serial
Ssyncs 232C channel

To VT

Figure 8-1: ISISTN interface

The STN inte, race detects touch-tone (DTMF) pulses in the audio from the phone line and
translates them into control codes delivered to a voice terminal. This allows a user of the system to
specify a connection through the Wideband Network by using the pushbuttons on his phone.

Coto

PROGRESS 71

Likewise, the phone line interface translates control codes from the processor into dial pulses so that
connection information from a remote site can be used to dial out to a local telephone. It is not
necessary that the phone line interface detect whether or not the destination phone is answered (a
difficult task) because the ring-back tone can be returned through the audio channel to let the caller
decide whether or not the call completed successfully.

The vocoder included in the STN interface is a 64Kb/s PCM codec. It is generally desirable to
reduce the bandwidth required for speech communication, but for the satellite network there are
several advantages to the use of wideband speech:

" PCM is the standard in the digital telephone industry.
" PCM hardware is simple, low-cost, and readily available.
* It will require fewer channels to place a large load on the network for experimental
purposes.

* The high quality of PCM speech will make it easier to isolate network-related glitches
from vocoding-related glitches (e.g., pitch tracking errors in LPC).

• PCM can be used in tandem with other vocoders if necessary.

The heavy loading which PCM places on the system is an initial advantage for testing and evaluation;
however, as narrowband vocoders improve in quality and become less expensive, and as the satellite
system becomes better understood, further experimentation will use a larger number of narrowband
vocoders.

The prototype of the STN interface board has been assembled, and an initial test configuration of
the firmware for the board's Z80 microprocessor has been completed. The test firmware has been
used to verify the operation of the components of the interface, including detecting DTMF signals,
pulse dialing, PCM coding/decoding, and silence detection. It was determined that the
microprocessor can handle the fairly taxing processing requirements. The firmware will now be
extended to the full operational capability.

8.4.3.1 STN Dialing Sequences

The WBC project has begun the definition of a set of dialing sequences to be used when an STN
interface is called from a telephone. This definition will specify the way to dial local telephone
numbers at remote sites and other aspects of connection control from a pushbutton telephone.
NVP-11 will be expanded to include these dialing sequences and any special requirements for the
interconnection of the STN and the Wideband Network.

8.4.4 EPOS Operating System

The EPOS operating system developed by the ISI NSC project was selected in February 1980 to
support the Mini-Concentrator gateway software being developed by Lincoln Laboratory. The Mini-
Concentrator will act as a packet aggregator using the ST protocol, and will run on PDP11/44
machines at ISI, Lincoln, and SRI. EPOS has been augmented with some additional capabilities
required for the development of the Mini-Concentrator, and several other support tasks have been
accomplished:

* An EPOS System Overview [1] document was prepared to help the individuals making the
selection evaluate EPOS relative to the other operating systems which were considered.

72 NETWORK SECURE COMMUNICATION /WIlEBAND COMMUNICATION

" EPOS has been augmented to fully support the UNIX file system in order to allow Mini-
Concentrator development to be performed on the PDP1 1/45-based UNIX systems which
run at Lincoln and ISI. This allows files created by either operating system to be read by
the other.

" ISI generated an EPOS system for the Lincoln configuration, and it was transferred to
Lincoln via the ARPANET. The system was loaded and ran successfully on the first
attempt without requiring any participation from ISI.

" Terminal line flow control (using XON/XOFF control characters) has been added in both
directions. This allows EPOS and UNIX running in separate machines to be connected
via terminal lines for downloading purposes. Without the flow control, either system
might be flooded by character input at high rates.

" The EPOS debugger (MEND) has been updated to accept the revised MEND/XNET
symbol table format. A transformation from UNIX symbol format to the MEND for:nat has
been defined; a program was written by Lincoln implementing this transformation so that
EPOS applications developed on UNIX can be loaded and run on EPOS.

" The WBC project has developed a program called XLDR which runs under EPOS to
download software into ISI's second PDP1 1/45 from the primary one over a terminal line.

" A library of subroutines has been written to allow programs written in C to access the
EPOS system calls. The Mini-Concentrator software will be written primarily in C. Several
test programs have been written to check out the subroutine library. The library has been
supplied to Lincoln Laboratory.

" A second library of subroutines which emulate UNIX system call subroutines has also
been written. It will allow some standard UNIX programs to run on EPOS. Several
support programs have already been adapted. Included are the disk maintenance
programs ICHECK, DCHECK, and NCHECK; the first two have been set up to run
automatically when the system is started to verify the filesystem's integrity. Also adapted
are two UNIX programs LD and ATOLDA, part of the UNIX software production path.

" The Whitesmiths "C" compiler was converted from an RT11-based program to an EPOS
program so it could be used for the development of the NVP-I software being added to
the SPEECH system. The EPOS system calls library has been translated to form a third
library which is compatible with this compiler.

8.4.5 WBC Equipment Installation

The satellite antenna for the Wideband Network has been installed on the roof of the building which
houses ISI. Many legal and procedural difficulties had to be overcome to accomplish the installation.
The rest of the station equipment, including the Earth Station Interface (ESI) and Pluribus Satellite
IMP (PSAT), has also been installed and is being integrated,

The initial host system to be connected to the PSAT is a PDP1 1/44 running the Mini-Concentrator

software. The PDP11/44 is a recently announced product, with delivery of ISI's machine scheduled
in FY81. In the meantime, a PDP1 1/45 is available as a substitute.

The WBC project has also procured a UMC-Z80 programmable peripheral device for the PDP1 1
which, when combined with a Distant Host 1822 Interface supplied by Lincoln, acts as the interface to
the PSAT. This equipment has been installed in the PDP1 1, connected by a 150.ft cable to the PSAT,
and tested.

Last, the WBC project has received the first of four radio-receiver/clocks being purchased for use
in absolute time synchronization in the ARPANET, Wideband Network, and ARPA Internetwork in

general. These clocks receive National Bureau of Standards radio station WWVB to maintain
absolute time accurate within one millisecond and make it possible to measure absolute transit times
across networks to evaluate their performance for real-time data such as speech and video.

PROGRESS 73

Wp
Ii

Figure 8-2: Roof-mounted earth station at ISI

8.4.6 Video Bandwidth Compression

As thi3 year constitutes the transition from NSC to WBC, the video bandwidth compression effort
has just begun. An experiment plan has been written for the investigation of video compression
algorithms, including both technical and management plans. The investigation will begin with
simulations of video compression algorithms, followed by evaluations of those algorithms for
applicability in a real-time implementation, then the selection of compression hardware and the
implementation of firmware for the chosen algorithm.

Examination of the options for the initial increment of video hardware has already begun, and a
high-resolution video camera has been selected. The video bandwidth compression literature is
being studied to find algorithms appropriate for use in the transmission of real-time video across the
Wideband Network. Programs have been written for two cosine transform algorithms to compare
their processing time requirements.

74 NETWORK SECURE COMMUNICATION/WIDEBANO COMMUNICATION

8.4.7 NSC Bibliography

Based on inputs from all the NSC sites, a bibliography [4] was compiled of publications outside the
NSC community that were funded by NSC contracts. The bibliography was distributed as NSC Note
141 and also includes a list of all the previous NSC Notes.

8.5 IMPACT

As the ARPA NSC effort begins drawing to a close, its impact can be better evaluated. The project
has produced good-quality low-bandwidth voice compression a'gorithms and made advances in the
development of low-cost packet voice terminals. The work on speech bandwidth compression has
significantly influenced the development of the single-chip LPC synthesizer by Texas Instruments.
This in turn has led to intense competition from several manufacturers for the speech synthesis
market. A complete vocoder also requires components to perform the analysis-half of the
compression algorithm, of course, but the ready availability of synthesis devices has increased the
demand for speech input (analysis) devices as well. Together, these developments will not only
benefit the consumer market, but also bring down the cost of narrowband vocoders for secure
military communications systems.

The ARPANET speech work also helped to define the performance characteristics which speech
requires of a packet network. Existing network protocols concentrated on reliable delivery of each
packet of data. For voice, however, it is more important to minimize the end-to-end delay through the
network even if a few packets are lost or damaged. Two changes were made for packet speech:

1. The Network Voice Protocol was developed (primarily by ISI) to be used in place of the
standard Host-to-Host protocol.

2. The ARPANET itself was modified to provide "uncontrolled packet" service which does
not force end-to-end retransmission of packets for reliability.

With these developments, packet speech became a reality on the ARPANET.

The Atlantic Packet Satellite Experiment (APSE) contributed experience with PODA protocols for
control of the broadcast satellite channel. Pre-allocated bandwidth "streams" were used to allow
speech transmission with only one satellite-hop delay, and distributed conference control algorithms
were tested to reduce floor handoff delays. Like the ARPANET, though, the bandwidth in the APSE
was limited.

The Wideband Satellite program itself is a result of the impact of the ARPANET and APSE speech
programs. Since it is a cooperative program between ARPA and DCA (Defense Communications
Agency), the Wideband effort provides a real opportunity to help shape military plans for future
secure communications systems. The increase in bandwidth which the satellite provides will allow
experimentation not only with several voice channels but also with other media, such as video,
graphics, text and facsimile. Eventually it will be possible to communicate between command centers
in a teleconferencing mode for improved control of crisis situations. Even in less demanding
circumstances, such as in the conduct of everyday military business, multimedia conferencing could
reduce the need for travel and increase the productivity of the reduced military manpower available
today.

FUTURE WORK 75

8.6 FUTURE WORK

The Wideband Communication Program is the first development of high-bandwidth, long-haul
packet communication. It provides significant opportunities for research in satellite-based, real-time.
multimedia communication. Since the project is just beginning, most of its work lies in the future.

8.6.1 Initial Network Testing

Much of the effort expended during FY81 at all the Wideband Network sites will be to verify the
operation of the network itself, and then to test and refine the transmission of multiple channels of
packet speech across the network. The Experiment Plan prepared by Lincoln Laboratory includes a
number of experiments which will continue throughout FY81 and beyond. ISl will participate in these
experiments, including the design of tests, the collection of measurements, and the analysis of data.

As packet speech transmission becomes more stable, conference control mechanisms will be
tested. The long delay of the satellite link causes problems for synchronization of control in
interactive conversations. The ISI WBC project will participate in the implementation and testing of
the various mechanisms.

8.6.2 Switched Telephone Network Interface

The test firmware which has been written for the STN Interface's microprocessor will be extended
to the full operational capability. Ten "production" copies of the interface board will be built and
distributed to some of the participants in the Wideband Program.

ISl expects to receive from Lincoln Laboratory a copy of its local access network (LEXNET) and two
to five Lincoln Voice Terminals to be attached to the LEXNET. The WBC project will implement the
necessary software to drive the STN interface as part of the Lincoln Voice Terminal and will also

assist other sites (such as SRI) in the interfacing of the STN board to other equipment.

Once the transmission of packet speech on the Wideband Network becomes stable, and use of the
STN interfaces for everyday calls becomes common, it may be desirable to increase the number of
available channels and to free the Lincoln Voice Terminals for other experimentation. In that case, it
might be desirable to implement voice terminal functions in the BBN Voice Funnel itself, and interface
STN boards directly to it.

8.6.3 Video Bandwidth Compression

A major portion of the ISI WBC project effort will be the development of a video bandwidth
compression system for use on the Wideband Network. The goal will be to build a system capable of
transmitting color video with moderate motion in real time at a data rate of 1.5 megabits per second.
Unlike voice, video is a new area of experimentation for ISI. Consequently, some initial work will be
required to set up equipment and a software framework before experiments with the Wideband
Network can begin.

All video cameras and monitors will use NTSC composite video so that relatively inexpensive
standard equipment can be used. This choice is reasonable since the bandwidth limitations of the

76 NETWORK SECURE COMMUNICATION/WIDEBAND COMMUNICATION

Wideband NetworK will be more restrictive than those imposed by the standard-quality equipment.
Digitization will be done into a "frame memory" to which special-purpose bandwidth compression
hardware can be attached. A similar frame memory at a destination site will allow the use of a slow
frame transmission rate by repeatedly displaying the same frame on the destination monitor. Figure
8-3 shows the components of the video transmission system. Included in the diagram are the
transform processor and the interframe processor which will be null in the initial configurations.

CAMERA

AEDITRANSFORM F

F RAME MONITOR

MEMORIES

INTER-FRAME

PROCESSOR VOICE W B

ENCODER/DECODER < d F UNNEL ic NETWORK
QUANTIZER

Figure 8-3: Narrowband video system

The video algorithm development will have the following major facets:

1. Early demonstration of a "frame-grabbing" transmission capability over the Wideband
Network. Little or no bandwidth compression will be used, The rate at which frames will
be sent will be strictly a function of the number of bits per picture element (pixel), the
image resolution used, and the available channel bandwidth. This phase will provide a
means for early testing of protocols, equipment, and channel performance.

2. Using the same set of equipment, several algorithms will be evaluated for the purpose of
choosing a best algorithm or small family of algorithms to be implemented in real time.
Evaluation will be done on the basis of image quality, suitability for economical real-time
implementation, and how well the algorithm(s) matches the performance of the wideband
channel, with performance in the presence of channel errors to be an important
consideration.

3. As a result of the experience gained in the first two steps, an algorithm or family of
algorithms will be implemented in real time, if such implementation is possible with
reasonable effort and cost. Since such a real-time implementation will require building or
buying high-speed hardware, it is hoped that the general characteristics of the

FUTURE WORK 77

algorithm(s) will be defined well enough early in the course of the above evaluation step
so that the hardware may be specified and construction or acquisition started early on.
Thus the hardware would be on hand when the final algorithm is chosen.

8.6.4 Multimedia Conferencing

After gaining some experience with speech and video on the Wideband Network, and after the
network conferencing protocols have been developed further, the WBC project will develop a
multimedia conferencing system to include:

" Speech
, Video
" Graphics
" Text
" Facsimile

Before graphics and text can be integrated into a conferencing system, experiments will be required
to determine the effect of the Wideband Network on their transmission.

The WBC project will first build a prototype voice/graphics conferencing system based on the
SPEECH conferencing system and the graphics system of the ISI C2 Graphics Project. This system
will provide experience with the control protocols and data mechanisms required to later build an
integrated multimedia conferencing system.

After the hardware and software for transmission of real-time packet video have been developed,
the video medium will be integrated with the voice and graphics into the conferencing system.
Separate processors will be involved because video bandwidths cannot be handled by the speech or
graphics systems. However, the video data stream will probably be controlled by the PDP1 1 which
also supports the speech system.

8.6.5 Bulk Data Transfer

To investigate the transmission of nonreal-time data on the Wideband Network, the WBC project
will develop software to offer the satellite channel as an alternative to long paths through the
terrestrial ARPA network for bulk data transfers. This facility could be provided in steps:

1. A separate FTP program which transfers files over the satellite channel could be offered
to users as an alternative. It might still be most reasonable to maintain the TELNET part
of the connection over the ARPANET, and only use the satellite network for the data
connection.

2. After the separate FTP program has been tested, the standard FTP program could be
modified to transparently make a choice of ARPANET or Wideband Network for data
transfer depending on the size of the file to be transferred and the loading of the two
networks.

The protccol to be used for the FTP will probably be (at least initially) the standard FTP/TCP/IP
combination. Experiments will be conducted to determine how throughput is affected by the size of
the flow-control window and the use of additional protocol mechanisms such as negative
acknowledgments for packets containing corrupted data but intact headers.

78 NETWORK SECURE COMMUNICATION/WIDEBAND COMMUNICATION

REFERENCES

1. Casner, S. L., EPOS system overview. Forthcoming as a USC/Information Sciences Institute
technical report.

2. Gitman, I., and H. Frank, "Economic analysis of integrated voice and data networks: A case
study," Proceedings of the IEEE 66, (11), November 1978, 1549-1570.

3. Markel, J. D., B. T. Oshika. and A. H. Gray Jr., "Long term feature averaging in speaker
recognition," IEEE Trans. Acoustics, Speech and Signal Processing ASSP-25, (4), August 1977,
330-337.

4. Mellstrom, G., and E. R. Cole, NSC Bibliography and Index to NSC Notes, USC/Information
Sciences Institute, NSC Note 141, October 1979.

79

9. DISTRIBUTED SENSOR NETWORKS

Research Staff: Research Assistants: Support Staff:
Danny Cohen Richard Brooks Debe Hays
Jeffrey Barnett Avishay Halavy Rolanda Shelby
Iris Kameny Daniel Schwabe
Yechiam Yemini

9.1 INTRODUCTION

Military and commercial organizations are looking forward to large integrated data processing
systems in the 1980s. Such systems will bind together many separate applications so that information
processing techniques such as correlation and synthesis are available across many domains. Ideally,
the set of applications would be housed at a central location, and users would gain access to this site
through conventional network techniques.

Several factors and trends make the centralized systems approach less appealing, however.

1. Processor costs--a revolution in the cost/performance tradeoff for~computer power is
under way. The cost of cycles is rapidly decreasing and the cost/performance measure
is optimum for small- to medium-scale computers.

2. Communications costs- -though the cost of communications should continue to decrease,
the cost relative to cycles is increasing.

3. Locality--most data processing applications have the "locality property," i.e., each
application accesses a relatively isolated portion of the data available to the whole system
and each portion of the data is accessed frequently by only a few applications. Also, the
accessed portion is very large compared to the input data and generated output.

4. Robustness- -centralized systems are generally less resistant to component failure while
decentralized systems can be more resilient.

For these reasons (and others), we believe that the large integrated systems of the future will be built
upon a distributed hardware base and that control will be decentralized. Thus, these systems will use
a paradigm of cooperating experts rather than one of masters and slaves.

Our investigation of these types of systems has focused upon Distributed Sensor Networks (DSN).
A DSN contains a geographically distributed set of sensors (not necessarily all of the same kind),
communications mechanisms, and processes to combine information, perform correlations, and draw
inferences. A DSN may also include command and control components and provide for the fusion of
DSN information with information gathered outside the system proper (i.e., intelligence). Thus,
research into DSN provides a rich source of problems, the solutions to which will enhance our ability
to design and build the large integrated systems of the future.

Overviews of the problems and issues inherent in DSN systems are found in [2] and [18].

80 DISTRIBUTED SENSOR NETWORKS

9.2 PROBLEMS BEING SOLVED

Even though we believe that the large integrated systems of the future will be distributed and
decentralized, our knowledge is not yet sufficient to design THE system. Therefore, our efforts were
directed toward the more general problems: in particular, system issues that were both sensor- and
scenario-independent. Sensor independence was possible because diverse sensor families behave
similarly when their behavior is abstracted [9]. Scenario independence was dictated by our desire to
examine large design and problem spaces encompassing many applications.

Our research was concentrated on four general system design and methodological areas and two
specialized studies. These areas and studies are described below.

9.2.1 The Communication Problem

A DSN is an integrated system in that the total system, including the communications mechanism,
works toward a common objective. This is unlike a typical system, in which the communications
mechanism provides services to a variety of unrelated applications competing selfishly for resources.
Further, a DSN is a realtime system where the application processes often specialize in determining
the relative importance of data. Thus, it is quite clear that application knowledge must affect the
behavior of the communication services in areas such as flow control and priorities. The goal of DSN
communication is to provide for the interaction of application knowledge and communication for the
good of the entire system.

9.2.2 The Architecture Problem

The implementation of a distributed and decentralized system must include a decomposition
methodology. Each component in the decomposition is described by the role it plays in the total
system. The description includes the input requirements for the component and the output it
produces. The architecture problem is to determine reasonable guidelines for decomposing a system
given the system's global objective, the available resources, and the types of algorithms to be
employed.

9.2.3 The Organization Problem

Even given workable solutions to the communication and architecture problems, many system
issues remain. The deployment and reallocation problems, together called the organization problem,
are chief among them. The deployment problem is to assign components to the available resources.
For example, how many instances of a particular class of process should there be, at which node
should each run, and which other process instances are their communications partners? The
reallocation problem is similar: How is the system redeployed in the face of component failure, the
introduction of new components, or a specialized tactical need? A DSN faces this problem because
the critical nature of its objective may not allow the system to go offline to reallocate its resources. A
system busy monitoring and tracking craft over a large geographic area should not lose its entire
working state because a few components fail or are compromised.

PROBLEMS BEING SOLVED 81

9.2.4 The User Interface Problem

Decentralized systems present a problem to their users. The data presented to the user is often
gathered from many diverse sources and correlated. It is also possible that inferences have been
drawn from the data on its way to presentation. The user must be able to determine the sources,
processes applied, and the general level of confidence that should be attached to the summary he
sees. Also, the user must be able to advise the system about its future behavior, for example, to focus
attention on a particular area. Further, the user can be the source of intelligence not normally
available to the system, e.g., introduction of a new flight plan. Thus, the user of a DSN must be able to
understand system-generated information and control the system toward fulfillment of an overall goal.

9.2.5 The Position-Location Problem

Communicating packet radios can measure the distance separating them with a high degree of
accuracy--an absolute error of less than twenty feet. This distance measurement capability can be
used to compute the exact location of equipment, particularly sensors, after the equipment is
deployed. Contrast this to installing the equipment exactly at predetermined locations--not always
possible in rugged or hostile terrain. Distance measurement can also be used to determine the
present location of craft, particularly those engaged in surveying missions and thus needing an
accurate measurement base.

The abstract position-location problem is the following: Given a set of nodes, the distance
measurements between some of the nodes, and the locations of some of the nodes, (1) determine the
set of nodes whose absolute position can be computed, (2) compute the location of all such points,
and (3) determine the stability of the solution.

9.2.6 The Distributed Algorithm Problem

The paradigm for a distributed and decentralized system is to take a process we presumably know
how to implement in a centralized fashion, break it into pieces, distribute the pieces, and produce an
effect similar to the original. The distributed algorithm problem can be stated as follows: Given a
class of system organizations and restrictions on the communication facility (e.g., number of
messages), determine when it is possible and desirable to distribute particular parts of the process.
Today, we have no substantial theory about what processes can and cannot be distributed subject to
constraints.

9.3 GOALS AND APPROACH

The major goal of the DSN project was to develop and export technology aiding the implementors
of distributed and decentralized systems. The first step in this direction was derivation of an adequate
description of the DSN problem space. This included not only detailed knowledge of what
phenomena a DSN must confront and what types of components are available, but also
understanding why some systems are more highly valued than others. In other words, we wished to
develop objective methods of evaluating a system's performance.

Three techniques are available to gain understanding of complex systems. In order of increasing
desirability, they are:

82 DISTRIBUTED SENSOR NETWORKS

1. Simulation- -describe and make operational approximations of system components.
2. Testbed- -provide an environment for testing some components while simulating the

behavior of other components.
3. Analysis- -mathematical description and solution.

An aircraft can be simulated by writing sets of partial differential equations (obviously
approximations) describing the behavior of the components and their interaction with the
environment, and then numerically integrating the equations to observe the time history of stress
parameters. A testbed for an aircraft is a wind tunnel. Actual components (eg.. a wing) are tested in
a realistic environment. A testbed is component-independent because it can be used to test a variety
of components--a desirable property. For example, a wind tunnel is usable for different wings as well
as rudders and nose cones. Thus, the value of a testbed transcends its use for testing a single item.

Closed-form analysis for a system as complicated as an aircraft is rarely possible. Unfortunately,
such analysis of DSN is not possible for the same reason--complexity. However, a few subproblems in
the DSN world are amenable to closed-form analysis, for example, our work on position location and
development of a theory of distributed computation. Both problems are characterized by precise
mathematical definition, without which analysis is impossible. We developed a set of algorithms for
use by implementors of packet radios. These algorithms, called welders, use the distance estimating
capabilities of packet radios to determine the topology of a network. The work on distributed
algorithms has proceeded to the point where the problem can be stated in reasonably precise terms.
Our goal is to develop the theory deeply enough so that results are applicable to real-world-sized
processes.

Unfortunately, the research into system issues--architecture, communications, organization, and
the user interface--cannot employ such techniques. Therefore, we proposed to use a combination of
simulation and testbed. Objects and components in the DSN environment such as targets, sensors,
and communications devices (e.g., packet radio hardware) were always simulated. System
components that are software processes could either be simulated or the actual program run. The
testbed was our major design analysis tool. Provisions were made for several important activities:

Configuration Allow system design to be specified from a data base of component
representations.

Dynamics The configuration must be able to dynamically change.

Communications Allow simulation of a variety of communications regimes.

Resources Allow and properly account for the fact that many processes and activities
compete for resources at a node (a single computer).

Debugging Testbed components must be debugged. These include instrumentation and
testing tools for the component developers.

Reporting Summaries of resource utilization, system performance, etc., must be available.

Interface It must be possible to construct and use realistic user interface(s), including
online debugging and probing by the simulated system user.

GOALS AND APPROACH 83

The testbed was basically an event-driven system with special provisions for handling the problems
of local resource contention occurring at the system nodes. Communications modules handle global
contention that occurs with the use of the available communication bandwidth. Since the testbed is
not committed to a single communication paradigm (e.g., TCP or HEARSAY II), the testbed user must
supply these modules.

With such a testbed, it is possible to investigate many system-level problems. Competing
architectures, communications strategies, organizational paradigms, and user interfaces can be
compared. From this, we could state and quantify some of the design tradeoffs for DSN and other
decentralized systems.

9.4 PROGRESS

The activities and accomplishments of the DSN project are described below. Since this is the final
report for the DSN project, a summary of progress for its entire duration is given. A collection of
working papers written by project members is available in [10]. Some of the papers also appear in the
open literature or have been presented at conferences.

9.4.1 Progress on Defining the Problem

The initial task of a project such as DSN is to define the problem to be solved and the scope of
interest. In [2], the problem is formulated as one of turning errorful observations derived from many
sources (e.g., sensors and intelligence) into a reasonable world picture. The problem space is
defined to include not only sensors and low-level processes, but also decision-making functions.
Several advantages of distributed and decentralized systems are discussed in terms of system
scenarios that take advantage of the unique capabilities.

In [18] and [13], technological problems particularly relevant to the DSN world are enumerated.
These are the areas where progress must be made before DSN are a reality. The core problem
uncovered is distribution of inference procedures.

In [20] and its companion paper [3], the problem of an objective function for evaluating DSN
systems is addressed. The major point is that the value of a system depends upon its intended usage.
Though more precise position estimation is obviously a benefit and additional cost is an obvious
liability, no more can be said until the value of precision is known, and that value depends upon the
use of the extra bits. Also discussed is a methodology for extracting information from the ultimate
users of the systems to construct an objective evaluation criterion.

Another aspect of defining the problem is determining what phenomena can be ignored. In (9],
many different sensor families are reviewed, the conclusion being that nearly all sensors have a
similar enough functionality so that differences can be safely ignored. In particular, sensors are well
described by their sensitivity and error distribution. This is indeed fortunate because this description
allows us to investigate the high-level system issues without committing large amounts of resources
to detailed sensor simulation.

84 DISTRIBUTED SENSOR NETWORKS

9.4.2 Progress in System Methodology

The architecture problem for distributed systems has been a core computer science topic for many
years. See. for example, [1, 14, 15]. However, the more complex issues of decentralized control and
decision-making have received less attention. Several simple simulation exercises have been
attempted with prior versions of our testbed. The main result is our recognition that a good
experimental framework providing excellent control and monitoring facilities is necessary.

The system organization problems of deployment and reallocation are investigated in [4]. The
problem is formulated in terms of capabilities, where a capability is a description of a simple resource.
e.g,, processor power, memory, or bandwidth. A system is viewed as a collection of players that offer
capabilities (a computer node is an example of a player that offers capabilities) and a collection of
roles that consume capabilities. A role is a functionality that can be provided by a process. A role is
described not only by the capabilities it consumes but by its input/output relations to other types of
processes. Thus, the deployment problem is stated as assigning roles to players in a way that best
satisfies the system's objective. The objective describes aspects of necessary system behavior and
tradeoffs among competing alternatives.

We have made a literature search in the area of plausible inference to determine those techniques
available for use in DSN,.-see [7]. Further, an efficient methodology has been developed for some
classes of statistical reasoning in a distributed environment [8]. The work is based upon the
developments of Glenn Shafer and caters to environments where multiple observations are available
and confidence levels vary over time.

9.4.3 Progress on the Testbed

The testbed is the major tool necessary to achieve the long term goals of the project. The top-level
design is completed (see [51) and partially implemented. The core of the testbed is the mechanism it
provides for handling time. Two problems make time maintenance complicated: (1) resources
(capabilities) at a node are shared, therefore the placing of events in time is dependent upon a
resource sharing policy, and (2) simulation of communication may be at a different grain size
(minimum significant time) than the rest of the system.

A detailed design of the time handler is complete in a semiformal specification language, and is
implemented in SIMULA. The implementation provides for modular representations of a node's
resource sharing policy as well as an interface for simulating a variety of communication regimes.

A configuration language is part of the testbed. It is used to describe (1) system topology including
the initial configuration, (2) constraints on changes over time, and (3) the types and quantities of
information to be made available to the experimenter. This form of system description is based on the
capability model developed in [4].

9.4.4 Progress on Communication Methodology

A large effort has been expended by the project on communication mechanism design because a
DSN presents two unusual features: (1) the entire system, including its communication components,
has a common objective, and (2) the system is realtime. Several investigations into these and related
problems are described below. More details and information are available to the interested reader in
the documents cited.

PROGRESS 85

In [17] the topic of high-level protocols is investigated. Three subproblems are addressed:
language, coding, and transportation. Some examples of current practices are given, and it is argued
that modern techniques for expressing structure and control in programming languages can and
should be applied to analogous problems in communications among application processes in a
network. The conclusion results from the need for resource sharing and common objectives among
distributed processes.

In order to provide an appropriate interface to application-level programs in DSN or other
distributed systems, a communication interface language must be provided between the applications
and the underlying communication mechanism. A very important aspect of this language is naming,
since processes typically do not have static knowledge of other processes that can supply needed
input or employ their output to advantage. In (16] a naming scheme is proposed based upon
application-determined labeling. A process identifies itself to the communication system by
specifying a set of labels describing its interests (e.g., position-estimator). The labels are used to
search for communication partners sharing common interests and to simplify dynamic reorganization.

In [11], protocol specification issues are discussed. It is shown that protocol designs respond to
our knowledge of real-world behavior of networks, e.g., lost or duplicated messages, out-of-order
deliveries, and random delays. This presents a difficult problem to the designers of protocols and
networks. How are formal specifications and correctness criteria to be expressed? This theme is
continued in [21], where the problem of formal mechanisms to reason about protocols, particularly
their time-dependent behavior, is discussed.

An important theoretical result is derived in [22]. The "Generals Problem," formulated by
R. Gallager, is defined and discussed. Given two divisions of the same army on either side of an
enemy division, how are the two generals going to coordinate their attack? The only means available
is to send messengers back and forth through enemy lines; hence the probability of message receipt
is less than unity. It is shown that there is no sequence of message passing such that bcth armies are
certain of the time for a synchronized attack. In other words, there is no possible protocol for
guaranteed synchronization of distributed processes with an imperfect communication mechanism.

In [121, the problem of flow control in distributed realtime systems is investigated. The conclusion
is that there are some problems that cannot be solved without application-level knowledge. In
particular, there are (at least) two different kinds of messages: those whose value decreases with age
and those whose value does not. An example of the first kind is a position estimate that has been
succeeded by a later estimate. The old message can be discarded. On the other hand, early
messages should be retained in normal (sequential) applications such as file transfer. If later
messages are discarded because of congestion, they can be retransmitted, while discarding earlier
messages can cause congestion at message assembly sites.

The problem of decentralized access contrc' schemes for shared channels is discussed in [23].
The basic issue is, When should packet radios transmit and when should they delay? If transmissions
of proximate radios overlap in time, a collision occurs and both messages can be lost. On the other
hand, unnecessary delays sacrifice a portion of the available bandwidth. An optimal algorithm is
developed for making access decisions employing local knowledge of the network state and the
probable priorities of messages.

86 DISTRIBUTED SENSOR NETWORKS

9.4.5 Progress in Position Location

Our point of departure is that the task of position location would be implemented in packet radio
networks (PRN) which would not wish to commit to it more than a minimal amount of the PRN's
processing and communication resources. At the extreme case, this assumption implies that
distance measurements and position-location computations will be carried out infrequently, which
renders the tracking approach unattractive (you would not wish to use outdated position estimates to
filter your present position). Therefore we have preferred to study a primitive, less favorable, form of
the problem where the computation of positions is based upon present distance measurements only.

We have derived mathematical solutions to the following problams. Given a set of nodes and a set
of distance measurements between them, determine which groups of nodes can be positioned (i.e.,
their relative location computed); in what order the relative positions of nodes in a group can be
computed; how the positions of positionable groups can be computed. In addition, we have obtained
a rich set of theoretical results of major significance to problems of position location [19, 24, 25, 26].
Some of the major novelties introduced are the use of efficient probabilistic algorithms that compute
answers to difficult (probably intractable) problems, incurring potential error but with very small
probability; that is, we trade accuracy (with small probability we may not get a correct answer) for
speed.

We have turned the theoretical results into practical algorithms and implemented those in SIMULA.
The present version of our position-location system runs a centralized form of the position-location
algorithms. It does not yet reflect the full power of the theoretical results derived; nevertheless, it
already surpasses in capabilities any other position-location algorithms in the literature. The ultimate
system could compute the solution to any theoretically solvable position-location problem.

9.4.6 Progress in Distributed Computation Theory

A class of evaluation (estimation) algorithms called E-functions is axiomatically defined in [6]. E-
functions include the general class of statistical descriptions of populations such as means and the
median. A theory of E-functions is developed and related to classic work on inequalities. A result of
particular significance to distributed systems is the statement of necessary and sufficient conditions
such that the computation of an E-function can be distributed. It is shown also that there exist E-
functions that cannot be distributed in any reasonable way.

Other work in the theory of distributed computation concentrates on two mathematical models of
distribution. The first views the communication scheme as a restriction on a functional composition
and allows the theory of functional equations to be applied. The second model views the problem as
one of the topology of equivalence classes. The second method employs results from the theory of
transformations.

9.5 IMPACT

The DSN project has had a commitment to studying the problems of distributed and decentralized
systems. As some of our goa!- have been met. technology has been made ready for transfer from the
realm of research to practical engineering development. Some examples of technology transfer are
guides to evaluation of alternative systems, a capability model to describe distributed systems, results

IMPACT 87

on limitations and optimal utilization of communications resources, and position- location algorithms
as part of packet radio networks. Other results remain theoretical or incomplete.

Besides the above, much of importance has been learned in general about DSN. Perhaps the most
important is the definition and characterization of this problem area. We have learned that it is so vast
and amorphous that many parameters need to be bound before pithy and specific guides can be
provided to the implementors of actual DSN.

REFERENCES

1. Barnett, J., "Module linkage and communication in large systems," in R. Reddy (ed.), Speech
Recognition, pp. 500-520, Academic Press, New York, 1975.

2. Barnett, J., "DSN problems--an overview," in Distributed Sensor Networks, pp. 37-40, Carnegie-
Mellon University, December 1978.

3. Barnett, J., "The objective consumer," in DSN-Distributed Sensor Networks: Working Papers,
USC/Information Sciences Institute, WP.12, April 1979.

4. Barnett, J., "DSN: The organization problem," in DSN-Distributed Sensor Networks: Working
Papers, USC/Information Sciences Institute, WP-12, April 1979.

5. Barnett, J., "An environment for designing and evaluating DSNs," in DSN-Distributed Sensor
Networks: Working Papers, USC/Information Sciences Institute, WP-12, April 1979.

6. Barnett, J., "Evaluation functions," in DSN-Distributed Sensor Networks: Working Papers,
USC/Information Sciences Institute, WP-12, April 1979.

7. Barnett, J., Plausible inference references. Unpublished list of current literature on plausible
inference.

8. Barnett, J., "Computational methods for a mathematical theory of evidence," in Proceedings of
the International Joint Conferences on Artificial Intelligence, 1981. Forthcoming.

9. Cohen, D., "On various sensors," in DSN-Distributed Sensor Networks: Working Papers,
USC/Information Sciences Institute, WP-12, April 1979.

10. Cohen, D., J. Barnett, Y. Yemini, and D. Schwabe, DSN-Distributed Sensor Networks: Working
Papers, USC/Information Sciences Institute, WP-12, April 1979.

11. Cohen, D., "Protocols for dating coordination," in DSN-Distributed Sensor Networks: Working
Papers, USC/Information Sciences Institute, WP-12, April 1979.

12. Cohen, D., "Flow control for real-time communication," in DSN-Distributed Sensor Networks:
Working Papers, USC/Information Sciences Institute, WP.12, April 1979.

13. Davis, R., ed., "Report on the workshop on distributed Al," Sigart Newsletter (73), October 1980,
42-52. See the section by J. Barnett entitled "The USC/ISI DSN Project."

14. Estrin, G., "A methodology for the design of digital systems-supported by SARA at the age of
one," in Proceedings of the National Computer Conference, AFIPS, 1978.

88 DISTRIBUTED SENSOR NETWORKS

15. Lesser, V., PCL: A Process Control Language, University of Massachusetts at Amherst, Technical
Report, 1979.

16. Schwabe, D., "Communications interface specification," in DSN-Distributed Sensor Networks:
Working Papers, USC/Information Sciences Institute, WP-12, April 1979.

17. Sproull, R., and D. Cohen, "High-level protocols," Proceedings of the IEEE 66 (11), November
1978,1371-1386. Special Issue on Packet Communication Networks.

18. Yemini, Y., "Distributed sensor networks (DSN): An attempt to define the issues," in Distributed
Sensor Networks, pp. 53-60, Carnegie-Mellon University, December 1978.

19. Yemini, Y., "The positioning problem-a draft of an intermediate summary," in Distributed Sensor
Networks, pp. 137-145, Carnegie-Mellon University, December 1978.

20. Yemini, Y., "A study of the DSN objective problem," in DSN-Distributed Sensor Networks:
Working Papers, USC/Information Sciences Institute, WP.12, April 1979.

21. Yemini, Y., "Issues in protocol design for DSN--a preliminary study," in DSN-Distributed Sensor
Networks: Working Papers, USC/Information Sciences Institute, WP-12, April 1979.

22. Yemini, Y., and D. Cohen, "On some issues in communication between distributed processes,"
in Proceedings of the First International Conference on Distributed Processing, IEEE, 1979.

23. Yemini, Y., and L. Kleinrock, "On a general rule for access control, or silence is golden," in
DSN-Distributed Sensor Networks: Working Papers, USC/Information Sciences Institute, WP-
12, April 1979.

24. Yemini, Y., "Some theoretical aspects of position-location problems," in Proceedings of the
IEEE 20th Foundations of Computer Science, 1979.

25. Yemini, Y., and D. Cohen, "On some algorithmic aspects of structural rigidity," in DSN-
Distributed Sensor Networks: Working Papers, USC/Information Sciences Institute, WP-12, April
1979.

26. Yemini, Y., "On some combinatorial aspects of structural rigidity," in DSN-Distributed Sensor
Networks: Working Papers, USC/Information Sciences Institute, WP-12, April 1979.

89

10. PERSONAL COMMUNICATOR

Research Staff: Support Staff
Tom Ellis Joyce Reynolds

Steve Saunders

10.1 PROBLEM BEING SOLVED

There is a definite and growing need for location-independent, secure, frequent, personal access
to communication and information processing. Portable, versatile, simple-to-use communication
devices are central to any plan for meeting this need.

Already, much essential data is accessible only through computer communications. The
increasing use of computers at all stages in the acquisition, transmission, processing, arrangement,
and presentation of information increases the volume of time-critical information potentially available
to users. The need will become acute for many individuals in the military services to be provided with
location-independent access to this data in performing their duties.

In order to provide such access, a communication device is required that can

" remain with the person at all times, without being in his way when he is not actually
using it;

" be operated simply, without requiring much specialized training;
" handle enough different kinds and modes of information that he can rely on it for

substantially all of his communication needs.

A device satisfying these criteria can well be called a "Personal Communicator" (PC).

The PC is just one component of a communications and computation network; all components
must be present for the full utility of the concept to be realized. Communications connectivity, in
particular, must be supported by other kinds of components. The ARPA Packet Radio Network
(PRNet) is the prototype of such support for highly mobile, reconfigurable, survivable
communications; it has provided the context for the exploration of the personal communicator
concept.

Specific designs for the components of the system- -terminals, repeaters, concentrators,
computers, and databases--will depend on the ways these components interact; the interactions
within such a system can be expected to differ sharply from current systems, We can know how to
design portable communicators to correctly take advantage of the opportunities only after
experimenting with some trial realizations of the concept.

Constructing the personal communicator device is a step toward realization of the whole system.
The main value in early construction of model devices will be the exploration of system issues that it
will allow, and the experimental focus it will engender.

90 PERSONAL COMMUNICATOR

10.2 GOALS AND APPROACH

10.2.1 Goals -- Experimentation with a Model Personal Conmunicator

The fundamental goal of this effort is to gain the understanding that must guide and support future
designs of operational portable communicators and their associated systems. This guidance will be
in the form of explorations and experimental implementations of alternative approaches to
communicator design and components,

We have been concerned so far in this project with

" conceptually exploring the issues and constraints surrounding the concept of a highly
portable, highly capable personal communicator, and

" building a suitable base for experimentation consisting of a model PC and a supporting
software and communications context in which to pursue the more fundamental
experimental goals.

The conceptual exploration has already resulted in an issues document and in a summarized
functional specification condensed from the issues studies, and in guidance via personal interaction
to workers elsewhere building advanced display devices.

10.2.2 Approach-- Requirements for a Model Personal Communicator

From our previous work we can characterize here what has to be packaged to support
experiments. The overall characteristics must be such as to form a valid model of the functional and
operational behavior of reasonable personal communicators; this means full portability within the
experimental environment, fully functioning display, voice, and input capabilities, and fully functioning
software to implement the required local and remote system behavior.

Physical reauirements. Although in commercial parlance today "portable" may mean only that the
manufacturer chose to attach a handle, we mean something more specific: a portable communicator
is one that can be conveniently carried and used in the performance of some other primary job. That
is, it must be small enough to be carried in a pocket or on a strap, conveniently out of the user's way
while he works, yet at hand when he needs it. We believe that this level of portability is essential to the
full exploitation of the potential of packet radio. For example, a wristwatch fits this concept without
question, as do pocket calculators and side arms, but backpack- or briefcase-sized things do not,
since they cause excessive physical distraction or inconvenience when not in use. We believe that
this attribute of unobtrusive portability is an essential ingredient to the notion of a truly "personal
device."

Not every terminal or element of the PRNet needs to be so portable, of course. Large host
processors, databases of messages and maps, and high power repeater units cannot be. Some
terminals will be mounted in vehicles or buildings and need not be pocket sized. But there is a clear
need for fully portable units; it is rapidly becoming feasible to build experimental models, and near
future technology will support production designs. The pieces not yet available are low-power flat
displays and miniature packet radios.

GOALS AND APPROACH 91

If the PC is to be extremely portable, it must not be too large, too oddly shaped for convenient
carrying, or too heavy. We have built a mockup for a PC that we believe is a reasonable size: it is
about 7 by 4 by 1.5 inches and weighs about two pounds. This size and shape allow it to be carried in
a large pocket or holster. The volume is sufficient to contain a display teri.inal, radio unit, and
batteries; a lid opens to give more surface area for display, keyboard, and operating controls.

A more equidimensional shape with the same volume, while perhaps making radio construction
simpler, would be too bulky for any pocket and harder to open for use; a much flatter shape, while
avoiding a hinged display section, would be too wide for convenient carrying in a pocket. More
experience with portable operation will be required to establish where the optimum form lies within
the reasonable range.

A highly portable device must carry its own power source, rather than relying on wires. Today this
implies batteries. One of the most stringent and critical limitations on what can be put in a PC-size
package is imposed by the available battery energy density. Low power circuits and design
techniques, such as low duty cycle operation of subsystems, will be powerfully favored in all design
tradeoffs.

Terminal parameters to satisfy functional needs ad supor experiments.

1. Display: The PC must be able to show as much text (24x80 characters, with lower case)
as present CRT terminals and minimal pictures--480X240 pixels at the very least. Page
replacement time for the display must be less than three seconds on psychological
grounds and for many applications should be under one-tenth second. Either selective
erase capability or fast update is required to allow the use of dynamic, informative
cursors for feedback on user selections.

2. Voice I/0: Specialized hardware is required to digitize voice, amounting to perhaps 5 IC
chips. Memory will be occupied to buffer speech segments of sufficient length to express
a thought of meaning or to use a variable.delay communication net in real time.

3. Graphic I/0: There must be provision for a user to annotate or compose pictures and edit
them together with voice and text. A touch panel or similar device is needed for pointing,
drawing, and selecting displayed items. The processor must be powerful enough to
interpret and display highly compressed graphic data received from the net within delay
limits, and to compress graphics for transmission.

4. Memory: The terminal will be required to store several kinds of information for varying
lengths of time--buffered speech and graphic data, messages for playback, display
sections for quick scrolling or paging, and application programs. The 64K byte
addressing range of present microprocessors will allow enough memory for experiments
to establish memory requirements of operational units.

5. Communications interface: The speed of this interface must accommodate the data rate
of the network for short bursts at least, and be capable of handling 16Kbit/second
speech data on a continuous basis.

6. Processor: Present 8.bit CMOS processors are adequate for experimentation. We expect
that more processing power will be required for operational PCs and will be available in
the latter years of this effort. The main processor will be backed up by special processors
as necessary for voice handling, graphics order execution, etc.

7. Secondary memory: Although it is easy to imagine uses for it, the requirements for long.
term, large.capacity local storage are not well established by prior work. Again,
experimentation is necessary to determine its cost-effectiveness in this kind of terminal.

92 PERSONAL COMMUNICATOR

10.3 SCIENTIFIC PROGRESS

The major accomplishments of this project are briefly listed here, followed by more discussion of
the ones achieved during the period covered by this report. To date we have:

" explored in paper studies the issues of synchronization, communication data rates
needed and prospectively available, pointing device technologies (touchpanels, etc.),
and graphics capabilities and support:

" written a personal communicator functional specification intended to guide the
developers of the radio unit and supporting systems;

" identified the pacing state-of-the-art elements and technologies (such as electrophoretic
displays, low-power high-voltage drivers, and CMOS memory) which could maximally
impact the problem areas;

" developed electrophoretic (EP) display-cell materials and structures, construction, and
filling techniques, and built a number of test cells which have exhibited desirable
characteristics in life, particle migration and switching parameters;

" investigated several concepts for addressing the pixels of an EP display, and identified
the tradeoff issues among them. These approaches have included the triode internal
structure, thin film transistor matrices and zinc oxide (ZnO) varistor switching. The
tradeoff elements are mainly feasibility or yield at the current state of the art, addressing
speeds, and contrast.

" developed a transparent touch-sensitive pointing technology that offers extremely low
volume, weight, and power consumption;

" experimented with ZnO varistors as display matrix devices, including designing and
building electrical and mechanical test equipment, mathematical models, and test circuit
layouts to help evaluate the problems associated with this approach;

" built a benchtop breadboard version of the terminal system hardware, using a CMOS
microprocessor with 64K bytes of memory, a CRT simulating the full-size display, and
three variable-rate communications ports;

- evaluated several languages and approaches to programming 8-bit microcomputers,
resulting in the selection of FORTH to support development of the software components of
the PC.

10.3.1 Varistor Matrix Modeling and Experiments

Experiments were performed in order to obtain a first-hand understanding of the relative feasibility
of using the threshold properties of ZnO varistor ceramic as a selection material for EP displays.
Experimental materials were obtained from General Electric, where ZnO varistors are employed in
surge suppressor products and are being investigated to drive liquid crystal displays. After
characterizing the material parameters, modeling characteristic geometries, and testing specific cell
designs, we determined, with currently available materials, that:

* excessive capacitance would not be a serious problem (contrary to the case with lower.
density display arrays designed by others); but that

* large enough'capacitances to allow charge storage for each pixel were not attainable
without adding a thin-film dielectric to the process sequence, complicating fabrication
considerably.

SCIENTIFIC PROGRESS 93

10.3.2 Design of a Model Personal Communicator

In order to meet the needs for experimental operation and development of the PC and to match
what we believe from conceptual explorations are the proper performance parameters, we are
building a model communicator with the following internal architecture.

The digital electronics consist of an RCA 1802 8.bit CMOS microprocessor, 64K bytes of RAM and
ROM, a specialized processor for speech, a touchpanel circuit made from a monolithic A-D converter,
and appropriate display drivers all connected via a common parallel bus. The processor executes 8-
bit instructions at about 400,000 per second.

The performance of this model will be sufficient to explore the issues and establish the proper sizes
and performance parameters needed in operational communicators. We expect that experience will
lead us to increase the performance in some areas; some performance increases will be almost
automatic as more powerful 16.bit CMOS microprocessors, already announced, become available.

The electrical power consumption of such a configuration, using published figures for available
components, is no more than 324 milliwatts during active operation (while sending or receiving
speech, computing graphic representation, etc.), 92 mW while idle between operations, and 23 mW in
a standby mode (listening for net or user activity but not "in use"). These figures include processor,
32K of RAM, 32K of ROM, and the touchpanel; they do not include the speech processing or display
drivers. Speech processing power requirements have not been established, but there is no reason to
believe that they must be larger than 100mW active and 5mW standby. Display drivers are an item of
serious concern, since so many circuits are required. Their power requirements will depend on the
voltage levels, speed, and storage requirements imposed by the specific display technology and
cannot be established with any precision at this time.

The breadboard model in its present state includes the 1802 processor, 64K of RAM, three
programmable high-speed serial communications ports, and a bit-map CRT display subsystem, all
using a standard iSBC/Multibus bus backplane for flexibility of future development.

10.3.3 Software Basis for Experimentation

After surveying possible programming arrangements, including several resident language systems
such as BASIC and nonresident arrangements such as cross assemblers on the PDP.10s, we have
selected the FORTH programming language and operating system to serve as a basis for our software
development. FORTH is a resident system including a stack-oriented, modular programming
language, secondary storage management, and numerous facilities for program development and
maintenance.

We plan to use one of the high-speed lines to implement secondary storage for the 1802 on the
PDP-10 disk file structures, thus centralizing our storage while retaining the benefits of a resident
programming system on the model communicator hardware. This will involve us early in network.
related software development, as we must replace the software floppy-disk driver program supplied
as part of the operating system with a serial-line driver of our own plus a file-transfer protocol adapted
to the secondary storage traffic generated by FORTH.

94 PERSONAL COMMUNICATOR

10.4 MILITARY IMPACT

We believe that the style of communications we propose to investigate will have a great impact on
the effectiveness of many military missions. To verify this thesis, in previous work this project
constructed a physical model of a portable terminal as a means of focusing conversations about the
concept on the issues affecting future designs. Interactions with military personnel and personnel
associated with military programs have met with high enthusiasm at the prospect and have prompted
very useful suggestions on scenarios, functional capabilities, and interface styles. Application areas
discussed have ranged from equipment maintenance support to a tactical field personnel command
and reporting capability. Functional and interface capabilities, the inspiration of much of the
application interest, result from the inclusion in one device of pictorial and voice interaction as well as
text. This allows a choice or mixture of media to suit the occasion, i.e.,

" Text (either narrative or tables) is lasting, unambiguous, and not easily subject to
misinterpretation due to various kinds of competing noise.

" Pictorial data is advantageous for quick interpretations of complex situations and lower
level user search and selection. Tactical scenarios have been enhanced by the projected
ability to retrieve maps from remote databases with up-to-date situation overlays and in
some cases asking the user to contribute to the currency of the overlay database by
graphical or textual additions to it from field locations. For equipment maintenance in the
field, exploded view drawings annotated with up-to-date maintenance bulletins
obtainable from a central database could significantly improve the effectiveness of this
function.

" Voice is most natural for quick, easy, and interactive communication. Voice is also very
useful in accompaniment with other medium such as pictures and tables for explanation
or discussion.

Specific areas expected to benefit are:

* Command mobility- -through more flexible communications;
* Man-machine interface design;
* Force effectiveness- -through better command communications;
* Support functions- -through better reporting and documentation availability.

10.5 FUTURE WORK

Real guidance for future designs will come from answers and partial answers to some research
questions that we have identified and clarified through our previous work. By this time we have fairly
strong ideas about how some of these issues should be handled but feel that experimental verification
is appropriate.

10.5.1 Research questions

" How does one terminal find the address or identifier of another? How is a call initiated?
How is the recipient notified? How are busy-signals, priorities, interrupts, and retrying
handled?

" How should multiple media be combined? What structures allow for efficiert, fail-safe
synchronization without user concern and for editing before transmission?

" Where in the network--at the terminal, in a host, in a network relay node--should the
processing and storage to implement each of various functions reside? What is the
correct system architecture?

FUTURE WORK 95

" How should a display of limited size be shared among multiple, competing, real-time user
tasks? How can the user control this sharing?

" What are the proper uses of two-way conversational connections versus one-way
messages? How can the two be smoothly integrated so that the user can shift from one to
the other easily (e.g., if connection is broken, or a call is interrupted by higher-priority
traffic)?

" How should access to databases be integrated with person-to-person messages and
conversations?

" What methods are appropriate for authenticating users when calling, sending messages,
and receiving messages? How can cryptographic key management be kept from
interfering with the user's task?

" What aids can be provided for diagnosis of problems with the terminal or network, for
temporary circumvention of faults, and for repairs? How can these be constructively
presented to a user who is not familiar with the internal construction of either the terminal
or the network?

" How should various pieces of status information- -time, network connectivity, host
availability, user position, etc.--be presented so as not to be missed if important, but not
to be unduly disturbing to ongoing tasks?

" How should the PC connect with the radio network and other communication modes (if
any)? I.e., what is the proper bandwidth per user and how can it be attained?

" What user-input devices are appropriate for a handheld communicator (keyboard,
touchpanel, joystick, tiltmeter, accelerometers, etc.) and how should they be configured?

" What is the optimum physical size and shape for a PC, given the level of technologies it is
to be built from? Should less-often-needed capabilities be provided via modular plug-
together units, or should there be a series of integrated models each offering a different
set of optional features?

" What tradeoffs can be made to achieve lower cost communicators without losing
significart functionality? When does centralizing a function result in lower system costs?

Some of these questions have been investigated before in other contexts; we should not cover the
full generality of such questions as user-input device comparisons, but rather concentrate on the
specific application to a handheld communications device with local computation ability.

10.5.2 Steps to be taken

The answers to these and other questions will come from experimental investigations that
implement and refine proposed solutions and evaluate the results. To perform these experiments we
will need to build testbeds of hardware, software, and environment. The following steps will be
required:

" build, operate, and refine fully-portable, full-function personal communicators;
" integrate the communicators with the communications networks at ISI, beginning with the

ARPANET, to provide sources of messages, realistic operating conditions (including a
rudimentary real-time message environment), and incentive for others here to use and
criticize our models;

" design, build, test, and refine user interfaces and control procedures for the personal
communicators, validating them through experiments with users from within and outside
the research community.

This project has been kept at a relatively small level until the contributing technologies are
sufficiently well along to support realization of an actual research testbed. Our emphasis has been in
identification both of operational or functional issues, and of specific needs for progress in the

96 PERSONAL COMMUNICATOR

contributing technologies, in pressing for development in these areas. The major technological areas
still falling short of the needs of portable personal communicators are in radio communications and in
display characteristics. We have given the low-power, flat-panel display developers much attention
and guidance in the past and intend to continue to do so as we feel that we can have and have had
considerable impact here.

97

11. APPLICATION DOWNLOADING

Research Staff: Support Staff:
Robert Balzer Joan Elliott
Alvin Cooperband
Martin Feather
Philip London
David Wile

11.1 INTRODUCTION

The rapid advancement in the processing capabilities of computer terminals provides an
opportunity to allow terminal processors to share in the execution of application programs. The
downloading of interactive applications into a terminal may often result in a decrease in demand for
shared, central processor time. However, developing such distributed application programs is a
difficult task. This difficulty is mitigated by first allowing an interactive application to be designed,
implemented, and tested using standard development techniques in a single-processor environment,
then semiautomatically partitioning and optimizing the application in a distibuted processor system
consisting of a terminal and a host computer.

11.2 BACKGROUND

The state of the art of computer terminal hardware is advancing quite rapidly, and these capabilities
are expected to continue developing at least as quickly. Naturally, users and implementers would like
to utilize these processing capabilities, especially for applications whh currently overload central
timeshared computing facilities.

This overloading typically arises from neither excessive computing nor memory requirements, but
rather from the need for responsiveness (providing feedback rapidly enough to present disruption of
the user's train of thought). Building responsive large time-shared facilities has proved most elusive.
In network-based systems, communication delays, by themselves, often preclude responsiveness.

In reaction to this difficulty, the notion of achieving responsiveness through dedicated local
processing has received considerable attention (e.g., NSW front end processor). Hardware advances
in computer terminals have made this option of dedicated local processing economically cost
effective. In addition to relieving the responsiveness problem, local processors provide benefits of
improved reliability by reducing dependence on centralized facilities and security by keeping sensitive
data physically segregated from shared resources.

However, the largest potential benefits may arise from improvements in the man-machine interface.
The use of local dedicated processors only addresses this larger problem (which is separately tl-e
focus of a major DARPA-IPTO effort) through increased responsiveness--but this may well be a
central issue. For example, a new generation of two-dimensional CRT screen-based editors are being
produced which are both more powerful and more natural than previous editors. Universally, these

98 APPLICATION DOWNLOADING

editors require both more computational power and increased responsiveness for their effective use,
and for this reason, they are being implemented on local dedicated processors. There is strong
implication that improvements in the man-machine interface will require further increases in
computing resources and responsiveness, which will necessitate dedicated local processors.

11.3 PROBLEM BEING SOLVED

The availability of local dedicated processors powerful enough to satisfy these demands cost
effectively is not in doubt. The difficulty, as usual, lies in the lack of software technology to effectively
utilize this processing potential.

The source of this difficulty is that the dedicated local processor cannot run the entire application,
but only a portion thereof, with the rest being handled by a shared central processor. There are two
reasons for this need to split the application between a dedicated local processor and a shared
centralized processor. The first is functional. Some portions of the application deal with multiply
accessible shared data and/or resource allocation of shared resources. This portion cannot be
distributed among dedicated local processors, but must be maintained as a shared centralized
capability. The second reason is resource limitations (mainly memory) of the dedicated processor.
The entire application typically exceeds these resource limitations, and so the most appropriate
subportions of the application must be identified for inclusion within the dedicated processor.

Building "distributed" systems which operate on cooperating processors is much more difficult
and less well understood than building systems which operate in a uniprocessor environment. This
difficulty has several sources. First, additional design complexities are introduced by the need to
divide the functionality between processors and by the need to introduce communication and
synchronization protocols between the processors to maintain compatible versions of data structures
which are logically shared. Second, additional implementation complexities are introduced by using
two different processors, with (typically) two different languages and programmer support systems.
Third, debugging is greatly compounded by use of more than a single processor (as weak as
debugging technology is for single-language single-machine programs, it is far weaker for
multilanguage multimachine situations). Finally, application maintenance is clearly compromised by
the additional complexity introduced.

11.4 APPROACH

These difficulties, introduced by the necessity of building applications distributed between a local
dedicated processor and a shared, centralized processor, could be largely, or completely, mitigated if
we successfully developed a technology to split an application apart AFTER it had been designed,
implemented, tested and debugged in a uniprocessor environment. Splitting the application and
assigning the parts to the separate processors would simply be an additional optimization step to be
performed after the rest of the software development had been completed. The tremendous benefits
of designing, implementing, testing and debugging the entire application within a single language
uniprocessor environment automatically result from splitting the application after these other
activities are completed.

Since the testing and debugging would have already been completed, this technology would have
to be guaranteed to maintain the validity of the implementation. Such a technology of implementing a

I u n u I -

APPROACH 99

program via successive transformations, each of which maintains validity, was already being
developed (at 11 and elsewhere).

Our approach meshed nicely with existing transformational implementation technology and can be
viewed as a limited, specialized set of transformations which deal specifically with the issue of
dividing an application among a host and terminal processors.

In our approach, the programmer would simply indicate which portions (program and data) of the
application should reside in the local dedicated terminal processor and which should remain in the
centralized shared host processor. Based on the specified split, the application would be
transformed to substitute interprocess control protocols for those subroutine calls and returns which
spanned processors, and interprocess data protocols for those data accesses which spanned
processors. The programmer could also specify that some portions (program and/or data) should
exist in both processors. This introduces the need for additional protocols to maintain data
consistency between the processors [1].

Our contributions are described below in terms of the prototype partitioning system, relaxation of
the partitioning requirements, and optimizing the introduced communication protocols.

11.5 RELATED RESEARCH

Considerable attention has been paid to partitioned applications in the area of computer graphics.
In a typical graphics application, a small, dedicated satellite computer, which is used to drive a
graphics terminal, communicates with a large, shared, host processor over a narrow.bandwidth line.
The satellite computer is often used to perform some application-specific functions to reduce the load
on the host computer or to reduce communications. Since the host and satellite computer typically
use different languages and operating systems, most such partitioned applications have required the
implementer to start with a partitioned design, use different languages on each side of the partition,
and provide his own cross-partition interface to support passing of data and transfer of control.
Hamlin [41 developed a system that attempted to avoid all of these difficulties. He reports some prior
efforts in this area; in the ICT system [3] interactive satellite graphics functions and cross-partition
communications are driven by interaction control tables supplied by the application programmer; the
GRAPHICS-2 system [2] provides automatic cross-partition communication, but at the cost of
duplicating the interactive graphics functions and processing; THEMIS [5] uses separate, specific
languages for the host and satellite portions of the interactive graphics functions and requires the
application programmer to specify the cross-partition communications; ICOPS [61 permits modules
written in a special language to be assigned to the host, the satellite, or both with automatic transfer
of control across the partition, but does not support references to variables on the other side of the
partition. None of these earlier systems supported arbitrary applications. Hamlin's system (CAGES)
permits an arbitrary application written in PL/1 to be partitioned so that a procedure can be assigned
to either side, and it automatically implements cross-partition reference to global data, passing of
procedure parameters, and transfer of control. Although Hamlin clearly identified the advantages of
having a system that permits an implementer to develop an application in a single high-order
language without committing himself to a particular partitioning of data and functions, his system is of
only limited interest because it precludes passing any POINTER, BASED, or CONTROLLED variable
types across the partition, thus severely restricting the programmer and limiting the way in which an
application may be partitioned.

100 APPLICATION DOWNLOADING

11.6 ACCOMPLISHMENTS

A prototype system has been developed to implement the methodology of application splitting
described above. Partitioning of the application is based on user declarations and proceeds
automatically. The resulting protocols for making interpartition control transfers require optimization
to make them more efficient. These optimizations include reducing the number of interpartition
transactions and reducing the amount of data that needs to be communicated from one processingi node to the other. We are developing a library of such user-invokable transformations. A major issue,

in addition to the discovery of the optimizing transformations themselves, is the support required by
the user for effective use of such a transformation library. Such support includes analytic tools and
instrumentation which aid the user in understanding his partitioned system, and a congenial
environment in which he can optimize his program by selective application of the transformations.

11.7 THE PROTOTYPE SYSTEM

11.7.1 The Problem

In splitting an application from a single processor system to a multiple processor system, several
different scenarios are conceivable.

• A system in which the functions from the original application were split into two groups.
Each group runs on one processor. Data passing is "message passing," presumed to be
infrequent and of small bandwidth. Two "subscenarios" are possible:

Each group of functions behaves as an autonomous unit; synchronization is
through critical sections.
Function execution follows the control flow of the original application, in which
there is always a single locus of control. Control will always reside in one
processor or the other.

e A system in which one processor views the other as a data structure. Here, data flow
dominates and control is trivial. This is sort of a "flat" version of the first scenario above.

- A system in which data is shared between the components, containing pointers back and
forth between data spaces.

* A system in which data is shared between the components through a shared memory.

The protocol developed will depend considerably on the hardware available for a split, in general.
However, we feel the most general protocol is one in which data structures are shared--perhaps
maintaining copies on each machine--and in which control structures are potentially parallel. This
characterizes the ultimate protocol which we wish to handle.

The present capability is a small subset of such a general control facility, yet it is considerably more
general than several of the above scenarios. Both the set of functions and the set of data structures
are partitioned to reside on a particular machine. No copies of data structures are maintained, but the
data structures may reference each other across partitions. The original control structure is retained,
in that the cross-partition control protocol allows recursive calls to the opposite partition.

THE PROTOTYPE SYSTEM 101

11.7.1.1 System Configuration

The development of the prototype system has allowed the investigation of the issues involved in
distributing data and control between two processors. We have ignored issues of memory resource
limitations and I/O. The prototype system consists of two Interlisp [7] jobs running on separate
ARPANET Hosts communicating via the Interlisp Net facility (currently simulated by independent
Interlisp jobs on the same processor communicating via a shared file).

The prototype system, in addition to providing an environment for investigating optimizing
transformations, was designed to limit the analysis required to produce a partitioned system from the
user's partitioning declarations and with the idea of keeping the protocols simple.-leaving the
complexity to the optimizing transformations. The protocols were designed to permit LISP's critical
EQ test (equivalence of pointers) to remain valid even when accessing remote data.

The system is organized about the activities depicted in Figure 11-1.

'Application Development
(for single machine)

program User's partitioning

f f- declarations
SAnalysis
(automatic)!

t
SPartitioning

(automatic
b

o

I distributed version
of program

Otp tim i za t ion

(user invoked
trans formatitons)

Soptimized distributed version of program

Figure 11 -1 : Development activities

The application programmer firsts builds his application. After stating partitioning declarations, the
application program is analyzed. The partitioning declarations and the results of the analysis are fed
into the partitioning system, which produces a distributed version of the original application program,
Finally, user-invoked transformations are applied to the distributed application components for the
purpose of optimizing the interprocessor protocols.

102 APPLICATION DOWNLOADING

11.7.1.2 Application Language and Partition Definition

The application language for programs to be partitioned by the Application Downloading system is
lnterlisp augmented to allow user-defined types. All expressions are typed and the types of
expressions are determinable by static analysis. Thus, the language would be strongly typed, except
that union types are permitted.

The protocol for the partitioning basically divides all data structures and functions into three
distinct classes: private, shared, and owned. Private objects are referenced by only one partition.
Shared objects have no owner but have the same representation on either side of the partition.
Owned objects are objects which reside on one side but are referenced on both sides. Owned
objects have an owning partition: initially the ownership is static but we will later consider allowing
ownership of objects to change dynamically.

In order to partition the data structures into the categories above--owned, private, and shared- -the
data types of the language have been divided into several categories. These in turn will be used to
determine the ownership of the data instances:

1. Primitive Types include primitive LISP types such as numbers, atoms, booleans,
strings.

2. Enumerated Types are types for which the instances are predeclared.
3. Record Types are data structures with predefined structure and a fixed number of

named access paths. The field entries in Record Type objects are typed objects
themselves.

4. Union Types are types whose instances are the collected instances of their declared
subtypes.

5. Structure Types are data structures with predefined structure but without predefined
access paths. Thus, access to substructures is with standard LISP functions. The
elements of structures are themselves typed objects. Examples of structures include an
array of numbers, a list of records.

6. Unrestricted Types include unrestricted LISP data structures implemented with CONS
cells. Unlike structures, no clean structural element type can be discerned.

Currently, data is partitioned on the basis of types to eliminate the need for run-time determination
of the accessibility of data (local vs, remote). There are restrictions on legal partitionings pertaining
to the different classes of types. Types are declared to reside wholly in one partition or the other.

The treatment for each class of type with respect to legality of partitionings and interpartition
referencing are:

" All primitive and enumerated types may be referenced remotely, without restriction.
" Unrestricted types may not be passed or referenced remotely. That is, instances of

unrestricted types may be referenced only in the partition in which their type was
declared to reside.

" Record types can be remotely referenced via a protocol described later. The protocol
was designed to preserve LISP's EQ (pointer equivalence) test rather than just LISP's
EQUAL (structure equivalence) test.

* Presently, structure types may not be referenced remotely. In section 11.7.2, we will
discuss the difficulties involved in remotely transferring data not possessing fixed, named
field accessors.

* All subtypes of a union type are required to be in the same partition as the union type.

THE PROTOTYPE SYSTEM 103

This prevents the "almost strongly typed" nature of the language from being a problem.
The system does not need to know the precise type of an expression as long as it knows
the union type, since the value of the expression is then guaranteed to exist in the same
partition as the union type.

11.7.1.3 Constructing the Partitions

The system builder designs his partitioning as described above, and then calls a function which
constructs the partitioned version of the system. This partitioning function deletes the private
functions and data declarations of the remote partition and redefines remotely owned functions and
data accessors as calls on protocol functions to accomplish them. In particular, it is not necessary to
modify the definitions of any locally owned functions or data structures, even if they are also
accessed remotely (their definition in the remote partition will be redefined to allow such access).

To be more specific, assume we are constructing the partition for the host. All of the functions and
data type declarations for the original system are present initially. Hence, we first remove all functions
and type declarations which are private to the terminal. We then redefine each function which is
owned by the terminal to be a call on a protocol transfer function: the name of the function and its
parameters are passed to the remote-function-call function. Similarly, we redefine all accessors to
record structures for records owned by the terminal as calls to protocol transfer functions which:

" Fetch data from a field of a remote datum;
" Store data into a field of a remote datum;
" Create a remote datum.

We then save the "core image" of the system with deleted and redefined definitions, after loading in a
package which effects the protocol described below. This core image will communicate with its dual
core image made by repeating the above process for the terminal. The nature of this communication
will be discussed presently.

The functions mentioned above all behave in the following way: some data (function parameters or
record instances to be accessed) are passed to the opposite partition and then some task is
performed by that partition on the data. Usually, data are passed back as the result of such a task.
Hence, the functions above may be characterized abstractly as involving a data transfer protocol
and a control transfer protocol.

11.7.1.4 Data Transfer Protocol

The data transfer protocol implemented presently is quite simple. Since there is always only one
owner of a datum, and since all remote access to it is through protocol functions, very little
bookkeeping concerning a remotely accessible datum is necessary. Basically, the only information
needed for a datum which is passed across the partition is a unique name for it and some means for
guaranteeing that the name (when passed back) will refer to the original datum. Because of garbage
collection in LISP, the address of a datum is not a suitable "name" for its remote reference: the datum
may change positions after a garbage collection and the remote partition will not be aware of the
change. We chose a simple scheme for maintaining names as indices to an array of remotely
accessed data (see Figure 11-2). We call this array the Entry Table, and an index into it an Exit
Index.

104 APPLICATION DOWNLOADING

L R

Data

Remote . Data Pointer
Data
Pointer - -;--flti

Exit Box Box

Exit I Entry
Index Table

Figure 1 1-2: Remote data maintenance

Now, an implementation which merely treated the opposite partition's exit indices as integers would
work. However, strong type enforcement would be required to guarantee that those integers were
"safe." Hence, when an exit index arrives from the owner's side, the index is simply put into an Exit
Box. The address of the exit box is then passed as the name for the remote datum on the non-
owner's side.

In fact, this arrangement will be even more important for a multimachine garbage-collection
scheme, where the implementation must have a handle on which integers represent external
pointers. Although we have not yet implemented a garbage-collection scheme, garbage collection is
easily accomplished for noncircular structures by intercepting the marking algorithm before an
unreferenced Exit Box is deallocated and reporting it to the other partition. In fact, all Exit Boxes are
linked together to permit searches which maintain EQ pointers on both sides: hence, the garbage
collection mechanism must occasionally be invoked with these pointers "masked out" for the
purposes of marking.

Circular structures (across partitions) are more difficult. We have developed an algorithm relying
on "postulating" garbage, and then allowing the normal collection mechanism to proceed until it
stabilizes. We have not tested this algorithm, nor do we intend to implement it.

Of course, this arrangement is symmetrical: there is an Entry Table and a set of Exit Boxes on each
side of the partition. When a datum is to be sent across the partition, the protocol involved is based
on its type:

Locally Owned Datum: an exit index is passed as follows:

la,

THE PROTOTYPE SYSTEM 105

- New Local Datum: if this is the first time a reference to this datum is being made
(because a new entry in the Entry Table was necessary), the message: My New
Data[Entry Index] is sent.

-Old Local Datum: this item was already in the Entry Table. Its index is sent via the
message My Old Data[Entry Index].

" Remotely Owned Datum: the value stored in the Exit Box is passed across in the message
Your Data[Entry Index].

" Copied Datum: the datum itself is passed across verbatim, in the message Our Data[
Datum 1.

Upon receipt of these messages, the opposite side must prepare the datum for its functions to work
on it. This is done as a response to the message type sent:

• My New Data: a new Exit Box is allocated and the remote Exit Index is stored in it. The
data is now represented as the address of the Exit Box.

- My Old Data: all Exit Boxes are searched to find the one which contains the Exit Index
passed. The address of the one found now represents the datum.

- Your Data: the value stored in the Entry Table at the passed Exit Index location is the
datum referenced.

• Our Data: the passed value is the value used.

11.7.1.5 Control Transfer Protocol

Our control transfer protocol allows the application to utilize the full recursive LISP control
structure.3 This recursive control regime allows interpartition calls to be nested within one another
and results in the LISP control stack's being interleaved between the two partitions. To prevent free
variable references from having to search this interleaved stack for dynamic bindings (by passing
messages back and forth between the partitions), all potentially accessible free variables are passed
across the partition when control is transferred so that all relevant portions of the stack are local and
the normal LISP stack referencing mechanisms can be used.

The protocol itself is easiest thought of as a sequence of "information" messages followed by an
"action" message. In particular, with each change of control which involves a function call or return,
the set of free variables which are shaf r' is updated. Then the call or return is made. Some calls
cannot nest, and hence, no free variable maintenance is necessary. The current protocol does not
need to update free variables for any remote record create, access, or store.

It is easiest to understand the protocol by following an example. Figure 11-3 is an abbreviated
transcript of the Eight Queens problem using the running protocol. Arrows indicate the direction of
information flow between the partitions. The terminal partition contains the top level function (08)
and the function REMOTE INITIALIZE; the host contains the functions INITIALIZE
GLOBALS,SAFEDIAGONALSAT, and PLACEQUEENSON. Control starts in 08 which immediately
calls a remote function. This is done by calling INITIALIZE GLOBALS which has been redefined in the
terminal partition to a call on the remote-procedure.call function, passing its own name and its
arguments to the function. The remote.procedure-call function simply transfers control to the other
partition through the control protocol, which causes the free variables to be sent before the actual

3 Actually, the "spaghetti stack" of Interlisp is not simulated: only the normal single control thread stack is supported

106 APPLICATION DOWNLOADING

Call ing
Q8

(FreeVariable A1'TEMPTEDCOLS (Ouroata NOBINO))
(FreeVariable E#4PTYCOLS (OurData NOBIND)) Is>HOST
(FreeVariable NUMBEROFQUEENS (OurData NOBIND)) Call ing
(FunctionCall ITIALIZEGLOBALS NIL) INITIALIZEGLOBALS

(Fr&&Variable ATTEMPTEDCOLS (Ow-Data NOBIND))
TERMINAL (FreeVariable EMPTYCOLS (OurData NOBINO))

(FreeVariable NUM8EROFQUEENS (OurData NOBIND)) Calling
(FunctionCallREMOTEINTITALIZE NIL) REMOTEINITIALIZE

(FreeVariable ATTEMPTEDCOLS (Ow-Data NOBIND))
(FreeVariable EP4PTYCOLS (OurData NOBIND)) ~ >HOST
(FreeVariable NUMBEROFQUEENS (OurData NOBIND)) IReturning from
(ReturnRec'ord FunctionCall (My~ew~ata 1)) REMOTEZNIZTIALIZE

(FreeVariable ATTEM4PTEOCOLS (OurData NOBIND))
TERMINAL <a- (FreeVariable EMPTYCOLS (Our~ata NOBIND))

(FreeVariable NUMBEAOFQUEENS (OurData 8)) Returning from
(ReturnRecord FunctionCall (My~ewData 1)) INITIALIZEGLOBALS

(FreeVariable ATTEMPTEOCOLS (MyNew Data 2)) I
(FreeVariable EMPTYCOLS (tMyData 1)) I*>HOST
(FreeVariable NUMBEROFQUEENS (OurData 8)) ICalling
(FunctionCall SAFEDIAGONALSAT ((Our~ata 1) (Ouruata 1))) SAFEDIAGONALSAT

(FreeVariable ATTEMPTEDCOIS (YourData 2))
TERMINAL <z=j (FreeVariable EMPTYCOLS (YourData 1))

(FreeVariable NUMBEROFQUEENS (Our~ata 8)) Returning from
(ReturnRecord FunctionCall (OurData T)) SAFEDIAGONALSAT

(FreeVariable ATTEMPTEDCOLS (MyNew Data 2)) I
(FreeVariable EMPTYCOLS (IMyData 1)) M = OST
(FreeVariable NUMBEROFQUEENS (OurData 8)) Calling
(FunctionCall PLACEQUEENOV ((OurData 8) (MyNew~ata 3))) PLACEQUEENN

(FreeVariable ATTEMPUF)COLS (YourData 2))
TERMINAL <-- (FreeVariable EMPTYCOLS (YourData 1))

(FreeVariable NUMBEROFQUEENS (OurData 8)) Returning from
(ReturnRecord FunctionCall (YourData 3)) PLACEQUEENON

(FreeVariable ATTEMPTEDCOLS (MyNew Data 4))
(FreeVariable EMPTYCOLS (MyNew~ata 6)) M > OST
(FreeVariable NUMBEROFQUEENS (OurData 8)) Calling
(FunctionCall SAFEDIAGOMALSAT ((OurData 2) (Our~ata 2))) SAFEDIAGONALSAT

TERMINAL <-- (RemoteAccess (ROWNUMBER) (YourDat&3))
Record Access

(ReturnRecord RemoteAccess (OurData 1)) '.>HOST
Access Value

TERMINAL <-s (RemoteAccess (COLNUMBER) (Your~ata 3))
Record Access

(ReturnRecord RemoteAccess (Our~ata 1)) -~>HOST
Access Value

Figure 11 -3: Control protocol transcript

THE PROTOTYPE SYSTEM 107

control transfer occurs. Control then passes to the host partition with the message: (FunctionCall
INITIALIZE GLOBALS NIL).

Then the host partition takes over. Each of the expressions passed is EVALed after invoking the
data transfer protocol on its arguments. Hence, each free variable is set 4 and then the function
INITIALIZE GLOBALS is called. This function itself does a call to the other partition, on REMOTE
INITIALIZE. Of course, its definition has been changed to a call on the control protocol, so it goes
through the same scenario as above.

Finally, REMOTE INITIALIZE returns. The free variables' values must again be copied (in case they
changed) before control actually returns. Notice that as the process progresses, each of the free
variables becomes initialized. In particular, the data transfer protocol messages described above are
visible as arguments to the control messages.

11.7.2 Reducing Restrictions on Legal Partitionings

The restrictions imposed on legal partitionings described above are too constraining. Our
experience has shown that forbidding structure types to be passed as data across the partition often
makes the choice of a reasonable control partitioning difficult. In fact, it would be desirable to allow
unrestricted access to data of all types. Let us consider the case of structure types, since
unrestricted types are a generalization of structure types. The difficulties in dealing with structures
arise from the choice of possible methods for allowing remote references. These choices are:

1. use a remote reference protocol as is done for record types, or

2. transmit across the partition a copy of the structure.

Both of these solutions have their individual problems.

Using a remote reference protocol leads to difficulties with updates and modifications to the data
structure. In data structures without a fixed number of named fields (vis a vis record types), it is
customary to use LISP primitive operations. Performing an update would require intercepting calls on
LISP primitives and invoking a remote update protocol in their place. In addition, using a remote
reference protocol would require an interpartition transaction for every modification desired. For
instance, one reason for using a structure type which is a list of records would be to allow sorting. If
the sorting operations occur in code which is remote to the location of the data, every modification
would require a transaction--clearly unacceptable.

Copying the data structure to the remote partition requiring update access to it would solve the
above problem. However, the copying could become an expensive data transfer transaction.
Furthermore, the EQ (pointer equality) test is lost, and a determination of whether the data structure
has been altered would have to be performed in order to determine if it need be sent back to its
original owner.

5

4Here, to the "uninitialized value" symbol, "NOBIND".

5 Unrestricted types have the same problems as struCture types. But they have the additional problem that a determination of
their "extent" is difficult to perform.

108 APPLICATION DOWNLOADING

One solution being considered for these problems with structure types is to build into the language
a set of templates (e.g., LISTS, ARRAYS, TREES), each with built-in access. update, and iteration
primitives. Thus, structures will be similar to records in that they will have named accessors, but the
restrictions on fixed numbers of fields would not be imposed. This would provide a solution to the
problem of intercepting calls on LISP primitives for the purpose of invoking the protocol interpreter.
Structure references would then go through a remote reference procedure similar to that for records.
If the inefficiencies involved in remotely referencing structures becomes overbearing, an optimization
(described in the next section) can be applied which creates a local copy of remote data.

Another restriction--that all instances of record types or structure types must reside in a particular
partition--is relaxed during the optimization phase (section 11.8.1) In the future we may allow the
programmer to achieve this effect through declarations rather than optimizations.

11.8 OPTIMIZATIONS

Ir this phase of development, the distributed application components are optimized by
programmer-invoked transformations. The purpose of this optimization is to decrease the run time
expense of going through the protocol interpreter, creating/accessing/updating data across the
partition, and transferring control across the partition. Three classes of optimizations are evident:

1. Data Optimizations, which adjust the residency of data to eliminate the ex(pense of remote
data references.

2. Code Optimizations, which adjust the control behavior to eliminate multiple transfers of
control, multiple remote data references, or a mixture of both.

. Run-time Activity Optimizations, which decrease run-time protocol activities if compile
time analysis can demonstrate that they are unnecessary.

11.8.1 Data Optimizations

Residency of data will have a dramatic impact on the number of remote data references across the
partition. An obvious improvement arises from making a local copy of a piece of remotely residing
data if there will be multiple references to that object in the same partition; see Figure 11 -4. This
raises several issues; a mechanism is required to take a reference, determine whether or not there
exists a local copy, and act accordingly. It must be possible to determine when the value of the local
copy needs to be sent across to the remote side (e.g., updating the local copy, thus invalidating the
remote version). Finally, the programmer must decide when the savings to be made exceed any extra
expense involved in the local copy mechanisms (i.e., know when a local copy optimization would truly
be an improvement).

A total relaxation of the notion of data residency leads to the concept of "floating" data, equally
able to reside in either partition, and which "floats" across to the side making the most recent
reference. We envision a mechanism for supporting both local copies and floating data.

Relaxing the partitioning restrictions on remote accesses to structure type data will induce the
same set of optimizations on structures, with the extra degree of freedom of deciding how much of a
whole structure should be locally copied (or floated).

m ,_ i | • I I I

OPTIMIZATIONS 109

L R L R

Data Local copy Data

Mul1tiple
references to
remote data

Naive protocol requires crossing With local copy. make references

partition for every reference. without crossing partition.

Figure 11-4: Local copies of remote data

11.8.2 Code Optimizations

This class of optimizations seeks to reduce the interpartition transaction expenses by adjusting the
control flow rather than the data residency. We are developing a set of such manipulations.

For example, nested remote field accesses--suppose we ask for the x-field of (the y-field of Z),
where Z is remote, and its y-field is also remote. The naive protocol would make two separate cross-
partition accesses, which we could optimize to a single access making the nested access on the
remote side. (See Figure 11-5.)

More generally, we may seek to package up sequences of remote executions of code and/or
remote data references (when there is no interaction with the intervening code, if any) on the
plausible assumption that the extra cost of making a more complex remote transfer or reference is far
less than the overheads of performing them separately.

In the case of invoking some function that acts on a large amount of remote data, we may choose
to invoke a copy of that function on the remote side as a more expedient optimization than making a
local copy of (or floating) a large data structure.

Many other possibilities become available once we consider parallel execution of the partitions; this
is one of our longer-term goals.

11.8.3 Run-time Activity Optimizations

Compile time analysis may reveal unnecessary protocol activity which can therefore be pruned
away, giving a guaranteed improvement. Such unnecessary activity often arises because the
partitioning system interposes a protocol to cope with the general case. Special case optimizations
can be employed to eliminate any unneeded activity. The extent to which such optimizations can be
employed will hinge on the depth of analysis performed.

110 APPLICATION DOWNLOADING

L R

y-f ield
remote Z
reference to Z

Afield To compute the x-field of (the
Y y-field of Z) where Z and its

y-field, Y, are both remote
(in side R), the naive protocol
would first perform a remote
access to get the y-field of Z,
returning the value to side L:

L R

y-field

x-field

Then it would perform a second
remote access, to get the
x-field of Y:

x -

L R

y-field

x-fleld

Clearly it would be an optimization
to compute the x-field of (the
y-field of Z) in R, eliminating the

X intermediate crossing from R to L
and back.

Figure 11-5: Optimizing nested remote field accesses

OPTIMIZATIONS 111

Potential savings exist in both the naive protocol and in the results of the preceding sections'
optimizations. An example of the former is the passing of values of all global and free variables on
each control transfer--flow analysis can lead to a dramatic pruning of such unnecessary passing. An
example of the latter is that following the introduction of local copies or floating data, compile-time
analysis may reveal occasions where locally valid copies are assuredly present, and direct references
to them may be inserted in place of indirection through the protocol interpreter.

11.9 UTILIZING THE APPLICATION DOWNLOADING METHODOLOGY

Although this project has concluded with the development of the prototype partitioning system and
optimizations described above, we provide here our thoughts on a support environment for this
methodology and further work required to make this methodology practical.

11.9.1 Tools and Instrumentation

A major part of the effort involved in developing the methodology of semiautomatically splitting an
existing application program consists of investigating the support required for the programmer. In
this section, we discuss the areas in which we expect the Application Downloading system to provide
guidance and assistance to the programmer. In particular, we describe the types of support required
by a programmer attempting to optimize a partitioned program by applying transformations. Also, we
discuss the tools that might assist him in selecting an appropriate partitioning.

11.9.1.1 Transformation technology

Several of the optimizations mentioned above are very context sensitive, in that considerable
intelligence is required to decide whether to apply the particular optimizations. Some of these
optimizations can be accomplished by declarative information added to the program text, but some
will be so local as to require individual program fragments to be optimized. Certainly, optimizations
will be interdependent, e.g., collapsed access paths interfere with local copy optimizations.

Hence, an interactive optimization system will be necessary to support the programmer of such
applications: he must direct the optimization and the system must maintain a consistent
representation of the program and prevent the programmer from making inconsistent optimization
decisions. Such systems are presently being developed as "Transformational Implementation"
systems (1].

Transformational implementation systems allow the programmer to apply optimizations by
choosing individual transformations to be applied to the program--the system carries out the
optimization. In order to use this technology, we must be able to characterize tho optimizations above
as succinct bits of programming knowledge which can be applied by the syster- when directed by the
programmer. We have been active in developing a transformational implementation system and do
intend to incorporate it into the application downloading framework in the future.

112 APPLICATION DOWNLOADING

11.9.1.2 Tools to aid partitioning

A good partitioning is one which limits the number of interpartition transactions- -one which
transfers control and accesses data across the partition as rarely as possible. This characteristic of a
split application relies on two factors: the programmer's selection of a partitioning and his ability to
optimize the resulting distributed system. Choosing a suitable partitioning is a difficult task that often
depends on the dynamic characteristics of the application program.

There are two classes of assistance that the Application Downloading system could provide the
programmer. The first is to present the results of static analysis. Such analysis could produce cross
reference listings, tables of the source of references to given typos, etc. In addition, static analysis of
a chosen partitioning could supply information on the likelihood of frequent interpartition transactions
(e.g., remote record access or function call occurring inside a loop) or a table of remote data
references (possibly indicating an improper choice for ownership of a given type).

The second class of assistance that could be provided to the programmer includes the results of
dynamic analysis. After a partitioning had been produced (and, if desired, optimized), the resulting
system could be simulated in a single processor environment. In this way, detailed statistics could be
gathered on aspects of the computation such as the source and frequency of interpartition
transactions. These statistics could then be analyzed to point out to the programmer the sites of
bottlenecks, and possibly suggest modifications to his chosen partitioning in order to improve
performance.

11.9.2 Strengthing the Application Downloading Methodology

First, more flexibility must be provided in the choice of a partitioning (for instance, by relieving
restrictions on structure and copy types).

Then, methods must be developed for incorporating parallelism into the distributed computation.
Many interactive applications lend themselves to such treatment. Semiautomatically constructing
such distributed, parallel applications fits in nicely with the existing Application Downloading
methodology, since we expect the programmer's interaction to be crucial in this area.

Finally, the ultimate goal of this research is to develop an Application Downloading system which
produces distributed applications for execution on real terminals using realistic communications
protocols. The system should thus, be redesigned to handle more widely used application languages,
such as Pascal or, in the future, Ada.

REFERENCES

1. Balzer, R., N. Goldman, and D. Wile, "On the transformational implementation approach to
programming," in 2nd International Conference on Software Engineering, pp. 337-344, IEEE,
October 1976.

2. Christensen, C., and E. Pinson, "Multi-function graphics for a large computer system," in 1967
Fall Joint Computer Conference Proceedings, pp. 697-711, IFIPS, 1967.

3. Cotton, I. W., "Languages for graphics attention handling," in Proceedings Computer Graphics
70 Symposium, Brunel University, 1970.

113

4. Hamlin, G., Jr., Configurable Applications for Satellite Graphics. Ph.D. thesis. University of North
Carolina at Chapel Hill, 1975.

5. Kulick, J., Themis--A Distributed Processor Graphics System, Ph.D. thesis, University of
Pennsylvania, 1972.

6. Stabler, G., Interconnected Processors--ICOPS, Ph.D. thesis, Brown University, 1974.

7. Teitelman, W., Interlisp Reference Manual, Xerox Palo Alto Research Center, 1978.

115

12. MULTIAPPLICATION SUPPORT TERMINAL

Research Staff: Support Staff:
Louis Gallenson Lisa Vail
Alvin Cooperband

12.1 PROBLEM BEING SOLVED

The MAST project is a development effort to demonstrate the use of applications partitioned
between terminal and host with reduced dependency on host and communications resources. The
effort demonstrates how to take advantage of the capabilities of state-of-the-art terminals and
examines the issues of application software preparation, user interface, host interface, and ARPANET
interface.

12.2 GOALS AND APPROACH

The MAST hardware should be low cost, flexible, readily available, and-simple, not only from the
perspective of the user but also in interaction with responsible applications, system-level software
(TOPS-20 and TENEX), and network protocols. It should behave like one or more Network Virtual
Terminals (NVTs) with no effect on existing programs that expect an NVT interface.

The applications selected for demonstration are an NLS6 (On-Line system) work station, an NVT,
an NSW (National Software Works) front end, and a screen editor/formatter suitable for document
preparation. The selection was based on need and use at ISI as well as the generation of a realistic,
nontrivial set of requirements for the terminal and application-software development system. The
most demanding application is the editor/formatter. The MAST screen editor will provide the user
with a simpler, convenient, and more efficient low-cost way to prepare and revise documents than is
currently available. As much of the editing as possible will be supported directly in the terminal; some
will require participation of the host application. It is intended, however, that this division of labor be
invisible to the user.

12.2.1 Hardware

During the early phases of the project it was assumed that we at ISI would have to develop the
hardware for this terminal since industry was not being very responsive to our needs. During the last
year, however, there was strong evidence that the required hardware would be available from
reputable manufacturers at reasonable cost, so our hardware effort was terminated. Orders were
placed for the Three Rivers Computer PERO systems on the assumptions that: (1) the cost of
obtaining prototype hardware from the vendor would be less than that of building it in house and (2)
the relatively expensive PERQs would provide a good source of terminals for a MAST environment if
we could reduce the cost by eliminating selected functional capabilities. Unfortunately, the PERO
system has not yet been delivered.

6NLS was developed at the Stanford Research Institute in the mid-60's and was one of the first office-automation systems

.-

118 MULTIAPPLICATION SUPPORT TERMINAL

12.2.2 Editor

A description of the editor is best understood in terms of our model of a document- preparation
system. The user of a documentation system should not have to communicate with the computer in
any kind of language that is explicitly and visually embedded within the text he edits. He should
modify the appearance of the document directly, rather than through commands to some later
process, so that he can see the consequences immediately. At most, he might describe to the
computer the kind of document feature he is using, with the expectation that doing so would cause
both the screen and the final document to assume the proper appearance for the output device he
has selected. In creating or modifying a document the user should work with a reasonably accurate
representation of how the final product will appear- as he makes form or content changes: the display
should automatically and immediately adjust itself to show the effect of these changes: What he sees
while editing a document is what he gets in the final hardcopy version.

The editor's database is a virtual document that has a rich enough description of the manuscript's
appearance to drive a wide range of output devices. The virtual document contains not only content
but also indications of form. A user may modify both content and form, but he does so only in terms
of the displayed manuscript; form indications in the virtual document, however, are independent of
the output device (whether printer or display). To print or display a manuscript, the virtual document
must be formatted: it must undergo an output transformation, based on the characteristics of the
output device, in which the form indications are bound for that device.

The display formatter and the terminal.resident part of the editor run under a LISP interpreter in the
terminal. An interpreter for a subset of Interlisp-1O sufficient to support the editor and display
formatter has been written in UCSD-Pascal and is awaiting the terminal for checkout. (The PERO
System is basically a Pascal system supporting the UCSD dialect; the inner CPU is a P-Machine.)

12.2.3 Application Software Development

A display editor, suitable for use in the documentation system described above, has been
developed; it supports a full range of manuscript editing and formatting functions but not the final
stages of document generation, e.g., pagination, cross.referencing, front matter, and indexing. An
incremental display formatter has also been developed to update display instructions as each editing
operation takes effect. These MAST applications have been developed and checked out (to the
extent possible without a suitable processing terminal) as Interlisp-10 systems. This provides us with
a rich, modern, dependable programming environment for writing and debugging the applications
that will eventually be executed in a terminal. While examining the issues of downloading these
programs (getting them to run conveniently in the terminal), we uncovered a series of interesting
questions worthy of separate consideration: the issues relating to generalized solutions for split
applications, downloading, partition boundaries, and cross-partition protocols are being considered
at ISI in a separate project (see chapter 11. of this report).

12.3 PROGRESS

This project has not been able to obtain the needed hardware. Project members have lost interest
and have been busy with other endeavors. Virtually no effort has been expended during the past
year.

PROGRESS 117

The MAST editor was reviewed by an IS(group for possible use as a production document-
preparation system. The conclusion of this group was that the MAST editor and formatter are worthy
of research and should be documented and publicized but are not adaptable to a production system
for use at ISI because of the effort required to complete and test a software system. reservations
about performance, and the lack of availability of existing editors able to perform the task Based on
this evaluation, the effort of implementing the editor on the PERO has been temporarily halted For
demonstration purposes the MAST editor and formatter will run on the host machine, and the PERO
will provide the video display and multiple window control functions.

The editor, its intent, approach, and implementation are fully explained in "A Documentation
System" [1].

12.4 IMPACT

The major impact of the MAST effort will be noted after successfully integrating and demonstrating
our existing software in the PERO. However, interim results are worth noting. An HP/NLS work
station was implemented during the earliest phase of the project. It is based on the HP26xx series,
the standard at ISI. It is economical, supported, reasonably packaged, .,ompatible with all other
software available to the user, and easily maintained. The HP/NLS work station provides all users
with an excellent alternative to the PERQ. ISI has already fabricated some 50 NLS terminals.

A large-screen terminal (54 lines of 80 characters). also developed within this project, has been well
received by potential users in the ARPA community. It is compatible with all the existing software at
fS1 (including NLS and the SIGMA terminal firmware) and the higher character capacity adds a
desirable dimension to the terminal/user interface.

The documentation for the editor and terminal has been widely distributed throughout the ARPA
research and industry communities. MAST has provided a model for future terminals, a
demonstration of a modern programming development system for terminal applications software, and
a demonstration of a document-preparation system for researchers.

12.5 FUTURE WORK

Our future effort depends on the acquisition of PERO. We will evaluate PERO as a terminal
(decreasing its cost by eliminating unneeded capabilities) and as a personalized computer, and
integrate the system into ISI's facilities.

REFERENCES

1. Cooperband, A. S., A documentation system, USC/Information Sciences Institute, WP-
11, 1978.

2. Cooperband, A. S., R. Medina-Mora, L. Gallenson, Multi-application terminal
requirements, 1978 (draft).

3. Cooperband, A. S., R. Medina-Mora, Preliminary display editor specifications, 1978
(draft).

4. Cooperband, A. S., R. Medina-Mora, P. Raveling, MAST system firmware design, 1978
(draft).

119

13. QPRIM

Research Staff: Support Staff:
Louis Gallenson Lisa Vail
Joel Goldberg
Alvin Cooperband

13.1 PROBLEM BEING SOLVED

The OPRIM (QM-1 Programming Research Instrument) effort is producing an online interactive
emulation facility housed in an existing mature operating system. Such a facility must be convenient
to use for both emulator development and emulator-based target development. It must also be a
production system, capable of being acquired and maintained by standard means.

Systems for developing computer programs provide a programmer, or a programming team, with a
complete program-development environment that includes a complete set of tools. Unfortunately, the
testing and debugging of programs created for embedded systems is typically performed either on the
actual machine involved or on an emulator housed in a separate emulation facility. In either case, the
program execution environment is different from--and typically far more primitive than--the program
development environment. QPRIM aims to bring this program execution and testing into the
programmers' working environment without paying the typically prohibitive cost involved in utilizing a
simulation program on the development host.

13.2 GOALS AND APPROACH

The PRIM project [2, 5] built such a prototype facility within the TENEX operating system; that
facility was operational at ISI from 1974 until 1979. Unfortunately, PRIM suffered from two major
defects. First, the emulation host was the Standard Computer Corporation MLP-900 [15]. This
particular machine was built as the prototype for a product that Standard eventually abandoned,
leaving our MLP-900 a white elephant. Second, since PRIM was designed with speed of emulation as
the foremost consideration, the instruction set that emerged was rather idiosyncratic. Consequently,
emulators tended to be messy to write and even worse to read. GPM [12], the compiler and language
used to generate MLP-900 microcode, helped somewhat to hide the mess. Even so, PRIM emulators
were both expensive to create and, due to the uniqueness of PRIM, of limited utility.

QPRIM is a PRIM-like emulation facility running under the DEC TOPS.20 operating system and
utilizing a production-emulation engine, the Nanodata QM-1. OPRIM emulators are written in Smite, a
computer description language developed by TRW. Under OPRIM, the QM-1 is a new, sharable
TOPS-20 resource that is available to TOPS-20 user processes (and, thereby, to TOPS-20 users) to
run emulation jobs. Each user process utilizing the OM. 1 does so independently of all others; the
procedures for constructing and running such an emulation job are quite simple.

It

'e

120 OPRIM

13.2.1 S stem Description

QPRIM was built and runs unaer the TOPS-20 operating system on a DECSystem-20. OPRIM
consists of three major components: the emulation facility per se; a large interface program that gives
a user (at a terminal) interactive access to the emulation facility and provides a framework for the
running emulator; and the set of target machine emulators that have been built and made available.

The emulation processor in OPRIM is a Nanodata OM.1 [11]. The QM-1 has been produced in
modest numbers and is still being manufactured; it has been used for production emulators, research
in emulation, and some classroom work. There is, therefore, a community of people who are already
producing emulator code for QM-I's. In addition, there has beon work on the production of QM-1
microcode from high-level machine descriptions. Currently, there is one language and
accompanying compiler, the Smite computer description language [14] produced by TRW.
Additionally, an effort to translate from ISPS [1] to Smite is currently under way at IS.

The QM-1 features two levels of firmware for implementing the user's target (or macro) machine: a
low-level 360-bit horizontal "nano" machine and a higher level 18-bit vertical "micro" machine. Much
of the potential power of the QM-1 is derived from the ability to tailor the micro machine to the
application through the creation of appropriate nanoprograms. Nanodata has defined and
implemented a base microinstruction set of some 80 instructions (out of an opcode space of 128
microinstructions) called MULTI [10]. Most applications of the QM-1 use a microinstruction set that is
an extension of MULTI, and certain of these extensions have gained considerable distribution.

13.2.2 The Emulation Facility

As an emulation engine the QM-1 is slaved to a DECSystem-20 to become its emulation resource.
There are three components that together create this TOPS-20 emulation facility:

- a hardware interface from the QM.1 to the DECSystem-20;
- a TOPS-20 monitor addition, the QM-1 driver, to manage the QM-1 and to provide

process access to the QM- 1; and
* a firmware emulation-control system resident on the QM-1, the microvisor.

The interface provides the physical connection between the two machines, while the QM-1 driver
provides program access to the QM-1 from TOPS-20, and the microvisor supervises emulation job
execution to maintain its integrity and that of the TOPS-20 system.

The interface unit that connects the QM-1 to the DECSystem-20 must meet the requirements both
of OPRIM. to suppor* the emulation facility, and of general system maintainability. For the latter, it
must provide a manual disconnect function that logically separates the QM-1 from the DECSystem-20
and precludes the possibility of one interfering with the operation of the other. Second, to be able to
reproduce QPRIM, the interface must be a standard part, available for purchase and subject to
normal maintainance. The emulation facility requires that the QM.1 and its microcode have shared
access to the memory of the DECSystem-20; all QM,1 memory references to the DECSystem-20
memory must use virtual addresses whose translation to real physical addresses is controlled,
ultimately, by the TOPS-20 monitor. In addition to shared memory, there is need for a control
communication path between the driver and the microvisor.

GOALS AND APPROACH 121

After discussions of various options, bclh internally and with DEC and Nanodata, we selected an
interface design in which the memory access path is through an independent port into the
DECSystem-20 memory and the control path is routed through the 20's 10 Bus. With this design all
hardware changes and interfaces lie outside the DECSystem-20 and, therefore, in the QM-1
environment. This arrangement is best because Nanodata seemed far more interested than DEC in
participating in this development and following the interface, and the entire concept, to fruition.

The microvisor comprises all the system firmware that runs on the OM-1 to support QPRIM. It
consists of nanocode that defines the actual microinstruction set, plus supervisory microcode that
defines the operating environment for all OPRIM emulation jobs. The overriding concern in the
design of the microvisor is security of the total system- -nothing that a user job might do (or attempt to
do) can be allowed to gain absolute control of the QM-1 or to gain access to absolute TOPS-20 main
store. An opposing concern is that the microvisor should support as rich and flexible an emulation
environment as might be useful in the foreseeable future. A final concern is compatibility with other
projects that are involved in QM-1 emulation work and the generation of QM-1 microcode. The
microvisor design phase went through many iterations and took much longer than expected as the
number of competing issues was larger than had been anticipated.

The current microvisor specification [7] provides a fixed microinstruction set, based on Nanodata's
MULTI, sufficient to allow the execution of emulators written in the SMITE computer description
language. The nanocode to support this instruction set is similar to the nanocode that supports it in
standard QM-1 systems with one exception: the main store instructions have been completely
reimplemented to treat the main store address as a virtual address within the virtual address space
assigned to the emulation job. The main store nanocode also implements, as a dynamic option,
automatic reference break detection utilizing the two most significant bits of each main store word as
break meta-bits; when this option is active, the executing microcode sees a 34-bit memory. The
remainder of the microvisor is microcode that executes on the QM-1 in supervisory mode; the two
halves of that code are concerned with emulation job control (including job swapping and page table
management) and with intrajob task scheduling in the multitask job environment that is supported by
QM-1. An emulation job can be interrupted after any microinstruction, swapped out, and eventually
swapped back in transparently; no job status or information is retained in the OM-1.

The driver design provided very few issues. The OM-1 was added as a new device type supported
by the TOPS-20 monitor with the driver as the device-specific code supporting that new device type.
The driver defines the monitor calls (in terms of existing device-dependent monitor calls, GTJFN,
OPENF, CLOSF, GDSTS, BIN, and MTOPR) that are used by a program to create and control a QM-1
emulation job; it also prescribes the format of the main store and context of that emulation job. Main
store is a standard TOPS-20 process virtual address space (a fork) created by the program. The
context is a contiguous memory area (within the program itself) containing an image of the emulation
job's control store; the context is copied into and back out of the real QM-1 control store by the
microvisor as part of its job-swapping function. When the job is not running, the context, as well as
the main store, may be examined and modified arbitrarily by the controlling program; while the job is
running (in the OM- 1, of course), only the main store is accessible to the program.

13.2.3 The QMI Program

The interface program, known as OM1, is that part of OPRIM visible to the user. It is a large
interactive command processor that knows how to create and control a QM-1 emulation job on behalf
of its (human) user at a terminal. (While the emulation facility is a normal system resource available to

122 OPRIM

any user process wishing to utilize it, OM1 is the only such program that currently exists; each
incarnatior oi the program creates a process that runs one emulation job, with no knowledge of, or
interaction with, any other emulation job.) The interface program is the single part of OPRIM taken
d rectly from the earlier PRIM system. Only a small part of this program is concerned with the details
o a QM-1. as opposed to MLP.900. emulation job; by far the greater part of the program--and of the
e'fort invested in writing the program--went into the command processing, the debugger. the
emulation job's 1/O server, and the management of data and tables concerning all of these.

The change of emulation engines by itself involved only the rewriting of two program modules: one
responsible for direct communication with the OM-1 driver to control the emulation job, and the other
responsible for loading emulator object code from appropriate object files into (the allocated image
of) control memory. These two modules reflect the change from MLP-900 to QM-1 and from GPM (the
MLP-900 high-order MOL) to SMITE.

Before making the absolute minimum program change required by the hardware change, we
considered what we might do to make OM1 ease the eventual job of the QPRIM emulator writer in
preparing emulation jobs. Our assumption here has been that any extra effort on our part at this
stage pays a dividend each time a new emulator is added to QPRIM. The areas of concern were the
run-time environment that the SMITE compiler presumes for its generated code, the lack of
modularity in generation of the emulators, and the possible use of an MPDL-like connection language
to describe the configurations of the final emulated computing system (rather than the configuration
commands extant in QM1). The scenarios and consequent levels of effort kept growing (see [8] for a
flavor of the high-water mark) until we finally realized that we had drastically exceeded the charter of
this straightforward engineering project.

In the end, we backed off from most of the improvements, settling on the current manager model
that offloads about half of the QM1 debugger support required of a PRIM emulator. The manager is a
small, fixed task that QM1 automatically loads along with the emulator being used (by either emulator
writer or target programmer). The result is an emulation job consisting of two tasks: the manager as
parent and the emulator proper as sole offspring. The manager collects all detected breakpoints in a
breakpoint buffer known to the debugger and signals the emulator to stop at the top of its cycle when
a break occurs. In addition, reference breaks in the emulator's main store are detected by the OPRIM
nanocode and reported directly to the manager for collection; the emulator is not explicitly involved.
The emulator itself must still define and detect the occurrence of event breaks; each break need only
be reported to the manager. The reporting mechanism has been designed to fit cleanly into SMITE's
port construct: each defined event in the emulator consists of a declared flag (for enabling the event)
and a port (for reporting an event occurrence) plus a simple conditional statement located at the
appropriate point in the emulator code:

declare '' declarations for an event named zzyzx
eflag-zzyzx flag, eport-zzyzx <35:0> port;

if eflag-zzyzx at the point defining the event ... '
then eport-zzyzx <- (appropriate event parameter}
end if; we write the port if enabled.

GOALS AND APPROACH 123

13.2.4 The Emulators

OPRIM is designed to support a set of emulation tools, letting each be used by its target
programmers directly--with no knowledge of OM- Is and very little of OPRIM. In order to integrate an
emulator into the OM1 program environment, the emulator writer must follow a set of rules in writing
the emulator and must provide necessary syntactic and semantic information to OM1 in the form of a
set of tables. The tables allow QM1 to know the names and attributes of all the target machine
constructs of interest to the target programmer, while hiding the details of their residence within the
address space of a QM-1. The tables are identical in format and content to those used in PRIM, while
the rules regarding the behavior of the emulator are very similar (though somewhat simpler because
the manager now handles the task of breakpoint logging and reference break detection). When the
programmer runs the program associated with his target machine, he gets the QM1 program with his
emulator and tables already loaded and ready to go.

For an emulator writer who is developing and testing an emulator, OM1 has a QM-1 pseudo-
emulator that consists of tables describing the resources of the QM-1 that are of interest. The
emulator writer using this pseudo-emulator has available the full QM1 command processor and its
facilities. He runs OM1 directly and commands the program to load his emulator (and tables, should
he not want the default pseudo-emulator).

The emulator writer developing a new emulation tool to be installed in OPRIM typically begins with
the QM-1 tables. As his emulator begins to take shape and work, he will-want to expand the QM-1
tables to include many of the constructs of his target machine. By the time he is done. his tables are
approximately the sum of the original QM-1 table and the table required to accompany his emulator
for use by others. The final step in the addition of this new emulator is to move (or copy) the emulator
code and tables to their final place and create the dummy program that the target programmer will
call upon to run QM1.

While we do not intend (or want) to be the principal emulator writers for OPRIM, we feel that it is
necessary for us to write and use at least one emulator as part of system shakedown. We have
selected the AN/UYK-20 as our target. The UYK-20 emulator in PRIM was both the most
comprehensive and the most used. The existing GPM emulator is being hand-translated to MULTI for
QPRIM; the resulting emulator should provide a good benchmark of QPRIM vs. PRIM. It may also
prove useful in comparing SMITE to hand-coded MULTI.

13.3 PROGRESS

After technical discussions with Nanodata, ISI submitted the final specification for the DECSystem-
20 interface unit [3] to Nanodata in August 1978; the prototype unit was installed on the ISI QM-1 in
March 1979 and checked out through the following month. Logic errors were found and corrected;
most of them proved to be simple mistakes or minor misinterpretations of the specification. Since that
time the unit has been in continual (though low-duty cycle) use without problems--a much better
record than that of the OM-1 itself.

Soon after the acceptance of the ISI interface unit, the second unit was ordered for RADC. It was
delivered to Rome and installed in June 1980, and immediately proved to be totally unusable; virtually
nothing in the unit worked correctly initially. As of the end of 1980, Nanodata has made some
improvements, but further checkout is still required before all parties are willing to accept it.

124 OPRIM

Following installation of the IS, interface unit, the pace of development of the emulation facility
software- -microvisor and driver--was increased. The facility went through TOPS-20 stand-alone
checkout in June 1980 and has been running and available at ISIB since then. Bugs have been found
and corrected in both microvisor and driver, but only one of them brought the entire TOPS 20 system
to a halt. All of the facility software is in place at RADC. awaiting acceptance of the interface unit.

The QM1 program and its accompanying manager task are also completed and working. To date,
they have been checked out only with small test microprograms since we have no complete
emulators. However. since all the old, complex parts of the program are unchanged from PRIM. they
should still be working. The UYK-20 emulator (a hand-translation of the PRIM UYK-20 emulator,
written in GPM) is still in progress. The first real exercise of the entire system must await the
completion of that emulator.

13.4 IMPACT

We believe that OPRIM will become an important tool for a number of systems and packages that
are being developed, in particular the National Software Works (NSW) and the Software Architecture
Evaluation Facility (SAEF). Both these systems have a place for an emulation tool that can become
part of the offered programming environment. The utility of OPRIM should be further enhanced by
the relative ease of production of OPRIM emulators.

13.5 FUTURE WORK

The immediate need regarding QPRIM concerns the completion of the basic system described
here. The two primary uncompleted items are the UYK-20 emulator and a manual, similar to the PRIM
Tool Builder's Manual [4], describing the nature of a QPRIM emulation tool--both the emulator itself
and the accompanying tables. Insertion of the UYK-20 tool into OPRIM may indicate further changes
in the OM1 program necessitated by the shift from PRIM; it is anticipated that these changes will be
small and primarily cosmetic.

If OPRIM finds acceptance in its user community, there are several areas where we see a fairly
modest investment leading to greater integration of OPRIM into its larger program development
environment, First, intelligent use of the symbolic portion of the SMITE compiler object file (currently
ignored) could replace some of the manual effort expended in the creation of an emulator's tables.
Second, QPRIM currently lacks a robust source of target code usable across all emulators; some form
of retargetable cross-assembler would complement OPRIM nicely. The NASA/McDonnell Douglas
Meta Assembler [91 is a possible candidate, though we have no direct experience with that program.
A loader in OPRIM that can move such an assembler's object code into the target memory would be
useful. Additionally, we note that both the OPRIM debugger and any such assembler require a
description of the instruction formats and assembly syntax of the target machine; making a single
description suffice for both seems an obvious step.

REFERENCES

1. Barbacci, M. R., G. Barnes, R. Cattell, and 0. Siewiorek, The ISPS Computer Description
Language, Carnegie-Mellon University. Computer Science Department, 1979.

125

2. Britt. B., A. Cooperband. L. Gallenson, and J. Goldberg, PRIM System: Overview,
USC/Information Sciences Institute, RR-77-58, March 1977.

3. Gallenson, L., and J. Goldberg, TOPS-20 (TENEX) QM-1 interface specifications, 1978.

4. Gallenson, L., A. Cooperband, and J. Goldberg, PRIM System: Tool Builder's Manual and User
Reference Manual, USC/Information Sciences Institute, 1978.

5. Goldberg, J., A. Cooperband, and L. Gallenson, "The PRIM system: An alternative architecture
for emulator development and use," in Proceedings, Tenth Annual Workshop on
Microprogramming, ACM SigMicro and IEEE TC-Micro, Niagara Falls, N. Y., October 1977.

6. J. Goldberg, A. Cooperband, and L. Gallenson, "PRIM System: A framework for emulation-based
debugging tools," in Proceedings, 1978 National Computer Conference, pp. 373-377, American
Federation of Information Processing Societies, Anaheim, California, June 1978.

7. Goldberg, J., QPRIM microvisor specification, 1980. MMPE Note # 14 (revision 6)

8. Goldberg, J., OPRIM -- user level, 1980.

9. Meta Assembler User's Manual, McDonnell Douglas Astronautics Company, Huntington Beach,
Calif., 1975.

10. MULTI Micromachine Description, Nanodata Corporation, Buffalo, N.Y., 1976.

11. QM-1 Hardware Level User's Manual, third edition, Nanodata Corporation, Buffalo, N.Y., 1979.

12. Oestreicher, D., A Microprogramming Language for the MLP-900, USC/Information Sciences
Institute, Technical Report RR-73-8, June 1973.

13. Advanced SMITE Compiler/SASS Interface Control Document, TRW Defense and Space
Systems Group, Redondo Beach, Calif., 1978.

14. Advanced SMITE Tra;ning Manual, TRW Defense and Space Systems Group, Redondo Beach,
Calif., 1979.

15. MLP-900 Multi-Lingual Processor Principles of Operation, Standard Computer Corporation,
1970.

127

14. COMPUTER RESEARCH SUPPORT

Technical Staff: Support Staff:
Dan Lynch John Metzger Walt Edmison

Ray Bates Bill Moore Chloe HoIg
Dale Chase Serge Polevitzky Andrea Ignatowski
Al Cooperband Craig Rogers Norm Jalbert
Phil Crowe Dale Russell Joe Kemp
Dick Fiddler Lynne Sims Keith Miles
Lou Gallenson Barden Smith Ron Shestokes
Glen Gauthier Dennis Smith Audree Smith
Jim Hurd Tom Wisniewski Scott Smith
Jim Koda Leo Yamanaka Debbie Williams
Ray Mason Mike Zonfrillo

14.1 PROBLEMS BEING SOLVED

The TENEX/TOPS-20 project is responsible for providing reliable computer cycles on a 24-hour.
7-day schedule to the ARPANET research and development community. At the same time, the project
makes available to ARPANET users the latest upgrades and revisions of hardware and software. The
project provides continuous computer center supervision and operation, and a full-time customer-
service staff that is responsive to user inquiries. This project supports two computer installations: the
larger at ISl's main facility in Marina del Rey, the smaller at the Naval Ocean Systems Center (NOSC)
in San Diego.

14.2 GOALS AND APPROACHES

The TENEX/TOPS-20 project provides support in five interrelated though distinct areas: Hardware,
System Software, Application Software, Operations, Customer Service. The goals and approaches of
each are summarized below.

Hardware

To achieve a reliability goal of 98.7 percent scheduled uptime, the preventive and remedial
maintenance responsibilities have been assigned to an in-house computer maintenance group. This
group provides 20-hour, 5-day on-site coverage and an on-call standby coverage for after hours. The
maintenance philosophy of this group can best be stated as "if it isn't broken, don't fix it." For this
approach to be successful, preventive maintenance is very closely controlled, and on-line diagnostics
and analysis are emphasized. A primary component in the reliability and availability of the hardware is
the physical environment in which it exists. Accordingly, a significant amount of time and resources is
expended in insuring that the best, most cost-effective environmental controls are used at both
facilities that ISI services.

b-Nor I4"AL

-- ' I I

128 COMPUTER RESEARCH SUPPORT

S)stem Softfare

The software group's primary goal is to install and maintain, at maximum reliability. Ik,'s 'ENEX
and TOPS-20 operating systems and applications software. In order to accomplish this gual. the
group provides 24-hour, 7-day coverage to analyze system crashes and to provide appropriate ixes
In addition. it is the group's responsibility to install, debug, and modify both the latest monitor
versions and the associated subsystems available from the vendor.

Applications Softi are

This group's primary goal is to provide software that extends and enhances the functionality of the
computers for the user community. This involves production of'new tools as well as improving and
maintaining existing ones.

Operations

The operations staff is responsible for operating the computers and watching over the systems and
the environment. At the Marina del Rey facility there is 24-hour, 7-day on-site coverage. At NOSC
normally there is coverage from 7:00 am to 4:00 pm daily; special exercises sometimes require
extended hours. When a problem occurs, the on-duty staff isolates it and takes appropriate action.
On the night and weekend shifts, the operations staff respond directly to user inquiries. Proper
training, experience, and familiarity with the environment are especially important.

Customer Service

The customer service group, based in Marina del Rey, provides a two-way communication link
between the users and consulting staff. This is accomplished by maintaining a 12-hour, 5-day on-
duty staff for prompt problem resolution and rapid information exchange. (The customer-service staff
incorporates the User Dedicated Resource project, which was established in 1977 and now operates
in parallel with the ISI Computer Research Support project, as well as other computer centers in the
ARPANET community.) The group offers introductory training in the use of both the hardware and
software tools available on the ISI TENEX/TOPS-20 systems as well as documentation for new users
of the ARPANET, and it also assists in the formulation of user training experiments for large,
ARPANET-based military experiments, for example, the U.S. Army XVIII Airborne Division Army Data
Distribution System at Ft. Bragg, N.C., and the C3/ARPANET Experiment at Headquarters Strategic
Air Command at Offutt AFB, Nebr. Appropriate multilevel user documentation is constantly being
generated and distributed to individual users, as well as to remote user group liaison personnel. In
accordance with IPTO guidelines, the customer-service group provides appropriate accounting data
to ARPA.

14.3 PROGRESS

In the past year, ISI has significantly improved in its ability to meet the increasing demand for
TENEX/TOPS-20 computer cycles, of users on the ARPANET and at ISI. These improvements fall into
the following catagories: Environmental Changes, Hardware Additions, Software Enhancements, and
Netloading.

PROGRESS 129

Environmental Changes

Because the reliability of the computer systems was being degraded by environmental problems.
specifically, power surges and inadequate air conditioning, ISI upgraded both the power sources and
the air-conditioning facilities. Two 150kw motor generator units were installed, thereby eliminating the
negative impact of short-term power fluctuations. For the air-conditioning problem. it was necessary
not only to correct for past inadequacies, but also to add cooling for the recent lO00-square-foot
enlargement of the center. To accomplish this, ISI installed two 20-ton air conditioning units,
increasing total capacity to 122 tons for the 4300-square-foot center.

Hard&iare Additions

During 1980, ISI added a KL-10-based TOPS-20 system, upgraded ISIA from a KA-10 to a KI.10-
based system, and upgraded ISIB from a KI-10 to a KL-10-based system. Along with these changes,
memory storage was increased by 2.5 megawords and disk storage by 2.6 gigabytes- -across six
systems. A Model 316 IMP (No. 27) was also added during the year. The Xerox Xerographic Printers
(XGPs) at ISI and IPTO were replaced by a laser-light-source, minicomputer-driven, xerographic
printer subsystem called the Penguin. The Penguin has consumed a large amount of time and effort,
but promises to provide excellent print-out and font versatility. The current local hardware
configuration is shown in Figure 14-1. The remote NOSC hardware configuration is shown in Figure
14-2.

System Software Enhancements

The software group converted two systems (ISIB and ISIC) from TENEX to TOPS-20 operating
systems, Modifications to the monitor and utility programs to support plug-compatible peripherals
were key to this conversion. The many software packages that were improved or developed included:

" Communications. Introduced LTLE (Line at a time - local echo) techniques in support of
the Ft. Bragg experiments.

" QM- 1. Developed monitor code to support this microprogrammable engine for use by the
OPRIM project.

" TCP/IP. Investigated and corrected many operating system bugs uncovered by
packages being developed in the Internetwork Concepts Research project.

" Diagnostics. Upgraded SA10 diagnostics to reliably interact with larger system storage
configurations. Installed latest versions of vendor-supplied diagnostics as they beczame
available.

Applications Software Enhancements

Most of the progress has been in developing software to drive new print devices, such as the
Penguin, and in providing many additional software packages. Some of these include:

" Accounting. Improvements in this area dealt with ease of use and the accuracy of
reports.

* PNG. Developed the ability to interface to the Penguin in order to produce high-quality,
hard-copy output.

" NLS. Produced a new version for output on the Penguin, improved the debugging
capabilities of NLS, and installed a new hyphenation dictionary that tripled the number of
known words.

* SCRIBE. Contracted with Scribe's distributor to use the commercially available package,
which has the capability to interface with the Penguin.

130 COMPUTER RESEARCH SUPPORT

E. E

100

C14u

400

CL)

00

000i

Z Go

PROGRESS 131

Classified ARPANET

TIP'35

KA-L1 KL2040 PDP1170

512 K Words 1024 K Words 256 K Words
Memory Memory Memory

(36 b)fl (36 bit) (16 bit)

600 MByte Disc 700 MByte Disc 200 MByte Disc
(BBN maintained)

Figure 14-2: Diagram of remote ISI ARPANET facility at NOSC

Netloading

At Ft. Bragg, N. C., some members of the user community responsible for ADDS (Army Data
Distribution System) were concerned about very poor response from their host, ISID. At the time of
the problem, the ISID population originated from essentially two nodes, Ft. Bragg (40-50 users) and
Gunter Air Force Station, Montgomery, Ala. (40-50 users). Since the ARPANET is not optimized for
this type of operation, poor response time might have been expected, but there was no justification
for a single packet to require round-trip times greater than ten seconds.

A number of tests were conducted to determine the source of the problem. First, ISI checked the
response time over the subnet between Ft. Bragg and ISI. BBN (Bolt Beranek and Newman) also
measured this response and supported ISI's conclusion: the subnet, though sluggish, did not
significantly contribute to the extreme delays. Second, ISI investigated the ISID IMP, IMP 22, as the
cause of the slow response. Data from TRACE (a BBN net measurement program) indicated that ISID
did not contribute to the very long echo times; rather, an overworked IMP 22 ran out of resources,
which resulted in significant delays because of retransmissions. Additional tests showed excessive
waits for packets sent to ISID. ISI examined usage of NCP buffers on ISID and found zero buffers
available for significant percentages of time. The available number of NCP buffers was doubled and
locked in core to provide faster access. Tests were repeated for several days showing much
improved results. There were very few ten-second responses, and the few recorded were correlated
with subnet problems. However, the response time during peak activity remained poor.

132 COMPUTER RESEARCH SUPPORT

The TOPS.20 NCP program was then modified to cooperate with the IMP protocols that cause the
IMP to stop talking to a host (in this case ISID) when more than eight outstanding messages are aimed
at a single destination (such as Gunter TIP). This significant change showed that the jerky response
tc Ft. Bragg could be attributed to overloading the Gunter TIP and the resultant blocking of messages
tc the Ft. Bragg TIP until the Gunter TIP became unclogged. With the new, nonblocking NCP on ISID
(and all other TOPS-20 sites at ISI), this problem no longer exists.

14.4 MILITARY IMPACT

ISI's computer centers provide ARPANET cycles 24 hours a day, 7 days a week to the Strategic Air
Command, Gunter AFS, Naval Ocean Systems Center, and Ft. Bragg. In addition to supplying
machine time, the TENEX/TOPS-20 project has provided additional support in the following areas:

" Training, documentation, and modifications as requested by user groups for NLS.
" Planning support and training in ISI systems software for the installation of an on-site

DEC System 2060 at Gunter AFB.
" Support for the production of AFM 67-1 with NLS.

14.5 FUTURE WORK

The Computer Research Support project will continue to provide computing service to the ARPA
research community, provide and support software packages for the ARPANET community, and offer
a program of technology transfer through the customer-service group.

The project also has some specific plans for the coming year. The DEC KL machines that currently
run version 3A of the TOPS-20 monitor will be upgraded to version 4. The project will investigate the
design and implementation of a computing center system structured so that users' access to their
files is not dependent on a single machine. Users should then be able to have access to the
resources they are used to having even though a particular computer has failed or has been taken
offline for maintenance.

fI

133

ISI PUBLICATIONS

RESEARCH REPORTS

Abbott, Russell J., A Command Language Processor for Flexible Interface Design, ISI/RR-74-24,
February 1975.

Alfvin, Peter W., A Formal Definition of AMDL, ISI/RR.79.78, November 1979.

Anderson, Robert H., Programmable Automation: The Future of Computers in Manufacturing,
ISI/RR-73.2, March 1973; also appeared in Datamation, Vol. 18, No. 12, December 1972, pp. 46-52.

-.- , and Nake M. Kamrany, Advanced Computer-Based Manufacturing Systems for Defense Needs,
ISI/RR-73-10, September 1973.

Balzer, Robert M., Automatic Programming, ISI/RR-73-1 (draft only).

--- , Human Use of World Knowledge, ISI/RR-73-7, March 1974.

Language-Independent Programmer's Interface, ISI/RR-73-15, March 1974; also appeared in
AF/PS Conference Proceedings, Vol. 43, AFIPS Press, Montvale, N. J., 1974.

---, Imprecise Program Specification, ISI/RR-75-36, May 1976; also appeared in Calcolo, Vol. XII,
Supplement 1, 1975.

..-, Norton R. Greenfeld, Martin J. Kay, William C. Mann, Walter R. Ryder, David Wilczynski, and
Albert L. Zobrist, Domain-Independent Automatic Programming, ISI/RR-73-14, March 1974; also
appeared in Proceedings of the International Federation of Information Processing Congress, 1974.

..-, Neil M. Goldman, and David Wile, Informality in Program Specifications, ISI/RR-77-59, April
1977.

..-, Neil M. Goldman, and David Wile, On the Use of Programming Knowledge, ISI/RR-77-63,
October 1977.

Neil M. Goldman, and David Wile, Meta-Evaluation as a Tool for Program Understanding,
ISI/RR-78-69, January 1978.

Bisbey, Richard L., and Gerald J. Popek, Encapsulation: An Approach to Operating System
Security, ISI/RR-73-17, December 1973.

---, Jim Carlstedt, Dale M. Chase, and Dennis Hollingworth, Data Dependency Analysis, ISI/RR-76-
45, February 1976.

---, and Dennis Hollingworth, A Distributable, Display-Device-Independent Vector Graphics System
for Command and Control, ISI/RR-80-87, July 1980.

Britt, Benjamin, Alvin Cooperband, Louis Gallenson, and Joel Goldberg, PRIM System: Overview,
ISI/RR-77-58, March 1977.

Carlisle, James H., A Tutorial for Use of the TENEX Electronic Notebook-Conference (TEN-C)
System on the ARPANET, ISI/RR-75-38, September 1975.

134 IS ANNUAL TECHNICAL REPORT

Carlstedt, Jim, Richard L. Bisbey II, and Gerald J. Popek, Pattern-Directed Protection Evaluation,
ISI/RR-75-31, June 1975.

Cohen, Dan, Specification for the Network Voice Protocol, ISI/RR-75-39, March 1976.

Mathematical Approach to Computational Networks, ISI/RR-78-73, November 1978.

The Oceanview Tales,ISI/RR.79.83, February 1980.

Crocker, Stephen D., State Deltas: A Formalism for Representing Segments of Computation,
ISI/RR-77-61, September 1977.

Ellis, Thomas 0., Louis Gallenson, John F. Heafner, and John T. Melvin, A Plan for Consolidation
and Automation of Military Telecommunications on Oahu, ISI/RR-73-12, June 1973.

Gallenson, Louis, An Approach to Providing a User Interface for Military Computer-Aided
Instruction in 1980, ISI/RR-75.43, December 1975.

Gerhart, Susan L., Program Verification in the 1980s: Problems, Perspectives, and Opportunities,
ISI/RR-78-71, August 1978.

Goldman, Neil, Robert M. Balzer, and David Wile, The Inference of Domain Structure from Informal
Process Descriptions, ISI/RR.77-64, October 1977.

--. , and David S. Wile, A Database Foundation for Process Specifications, ISI/RR-80-84, January
1980.

Good, Donald I., Ralph L. London, and W. W. Bledsoe, An Interactive Program Verification System,
ISI/RR.74-22, November 1974; also appeared in IEEE Transactions on Software Engineering, Vol. SE-
1, No. 1, March 1975, pp. 59-67.

Guttag, John V., Ellis Horowitz, and David R. Musser, The Design of Data Type Specifications,
ISI/RR-76-49, November 1976.

---, James H. Horning, Ralph L. London, A Proof Rule for Euclid Procedures, ISI/RR-77.60, May
1977; also in Neuhold, E. J., (ed.) Formal Description of Programming Concepts, North-Holland
Publishing Co., 1978, pp. 211.220.

Heafner, John F., A Methodology for Selecting and Refining Man-Computer Languages to Improve
Users' Performance, ISI/RR-74.21, September 1974.

---, Protocol Analysis of Man-Computer Languages: Design and Preliminary Findings, ISI/RR-75-
34, July 1975.

Igarashi, Shigeru, Ralph L. London, and David C. Luckham, Automatic Program Verification : A
Logical Basis and Itt Implementation, ISI/RR.73-11, May 1973; also appeared in Artificial Intelligence
Memo 200, Stanford University, May 1973 and Acta Informatica, Vol. 4, No. 2,1975, pp. 145-182.

Kamrany, Nake M., A Preliminary Analysis of the Economic Impact of Programmable Automation
Upon Discrete Manufacturing Products, ISI/RR.73.4, October 1973.

Kimbleton, Stephen R., A Heuristic Approach to Computer Systems Performance Improvement. I A
Fast Performance Prediction Tool, ISI/RR-74-20, March 1975.

ISI PUBLICATIONS 135

Lesser, Victor, and Lee D. Erman, An Experiment in Distributed Interpretation. ISI/RR-79-76. July
1979.

Levin, James A., and James A. Moore, Dialogue Games: Meta-Communication Structures for
Natural Language Interaction, ISI/RR-77.53, January 1977.

---, and Armar A. Archbold. Working Papers in Dialogue Modeling, Volume I, ISI/RR-77-55, January
1977.

---, and Neil M. Goldman, Process Models of Reference in Context, ISI/RR-78-72, October 1978.

London, Ralph L., Mary Shaw, and William A. Wulf, Abstraction and Verification in ALPHARD: A
Symbol Table Example, ISI/RR.76-51, December 1976.

Lynn, Donald S., Interactive Compiler Proving Using Hoare Proof Rules, ISI/RR-78-70, January
1978.

Mann, William C., Why Things Are So Bad for the Computer Naive User, ISI/RR-75-32, March 1975.

Dialogue-Based Research in Man-Machine Communication, ISI/RR-75-41, November 1975.

Man-Machine Communication Research Final Report, ISI/RR-77-57, February 1977.

Toward a Speech Act Theory for Natural Language Processing, ISI/RR-79-75, March 1980.

Dialogue Games, ISI/RR-79-77, November 1979.

Computer as Author--Results and Prospects, ISI/RR-79-82, January 1980.

--- , James A. Moore, James A. Levin, and James H. Carlisle, Observation Methods for Human
Dialogue, ISI/RR-75-33, July 1975.

..- , James H. Carlisle, James A. Moore, and James A. Levin, An Assessment of Reliability of
Dialogue Annotation Instructions, ISI/RR-77.54, January 1977.

---, Greg Scragg, and Armar A. Archbold, Working Papers in Dialogue Modeling, Volume II, ISI/RR-
77.56, January 1977.

Martin, Thomas H., Monty C. Stanford, F. Roy Carlson, and William C. Mann, A Policy Assessment
of Priorities and Functional Needs for the Military Computer-Aided Instruction Terminal, ISI/RR.75-44,
December 1975.

Miller, Lawrence H., An Investigation of the Effects of Output Variability and Output Bandwidth on
User Performance in an Interactive Computer System, ISI/RR-76-50, December 1976.

Moore, James A., James A. Levin, and William C. Mann, A Goal-Oriented Model of Natural
Language Interaction, ISI/RR-77-52, January 1977.

Moriconi, Mark S., A System for Incrementally Designing and Verifying Programs, Volume I, ISI/RR-
77-65, January 1978.

---, A System for Incrementally Designing and Verifying Programs, Appendix, Volume II, ISI/RR-77-
66, January 1978.

136 IS ANNUAL TECHNICAL REPORT

Musser, David R., A Proof Rule for Functions, ISI/RR-77-62, October 1977.

Oestreicher, Donald R., A Microprogramming Language for the MLP-900, ISI/RR-73-8, June 1973;
also appeared in the Proceedings of the ACM Sigplan Sigmicro Interface Meeting. New York, May 30.
June 1, 1973.

Richardson, Leroy, PRIM Overview, ISI/RR-74-19, February 1974.

Rothenberg, Jeff, An Intelligent Tutor: On-Line Documentation and Help for A Military Message
Service, ISI/RR-74-26, May 1975.

---, An Editor to Support Military Message Processing Personnel, ISI/RR.74-27, June 1975.

Shaw, Mary, William A. Wulf, and Ralph L. London, Abstraction and Verification in ALPHARD:
Iteration and Generators, ISI/RR-76-47, August 1976.

Tugender, Ronald, and Donald R. Oestreicher, Basic Functional Capabilities for a Military Message
Processing Service, ISI/RR-74-23, May 1975.

Wilczynski, David, A Process Elaboration Formalism for Writing and Analyzing Programs, ISI/RR-
75-35, October 1975.

Wulf, William A., Ralph L. London, and Mary Shaw, Abstraction and Verification in ALPHARD:
Introduction to Language and Methodology, ISI/RR-76-46, July 1976; also appeared in IEEE
Transactions on Software Engineering, Vol. SE-2, No. 4, December 1976, pp. 253-265.

Yonke, Martin D., A Knowledgeable, Language-Independent System for Program Construction and
Modification, ISI/RR.75-42, December 1975.

SPECIAL REPORTS

Annual Technical Report, May 1972 - May 1973, ISI/SR-73-1, September 1973.

A Research Program in the Field of Computer Technology, Annual Technical Report, May 1973 -
-May 1974, ISI/SR-74-2, July 1974.

A Research Program in Computer Technology, Annual Technical Report, May 1974 - June 1975,
ISI/SR-75-3, September 1975.

Bisbey, Richard L., Gerald Popek, and Jim Carlstedt, Protection Errors in Operating Systems:
Inconsistency of a Single Data Value Over Time, ISI/SR-75-4, January 1976.

Car stedt, Jim, Protection Errors in Operating Systems: Validation of Critical Variables, I S/SR-75-5,
May 1976.

A Research Program in Computer Technology, Annual Technical Report, July 1975 - June 1976,
ISI/SR-76-6, July 1976.

Hollingworth, Dennis, and Richard L. Bisbey 11, Protection Errors in Operating Systems:
Allocation/Deallocation Residuals, ISI/SR-76-7, June 1976.

1977 Annual Technical Report: A Research Program in Computer Technology, July 1976-June
1977, ISI/SR.77.8, November 1977.

ISI PUBLICATIONS 137

Carlstedt, Jim, Protection Errors in Operating Systems: Serialization. ISI/SR-77.9, April 1978.

Carlstedt, Jim, Protection Errors in Operating Systems: A Selected Annotated Bibliography and
Index to Terminology, ISl/SR-78-10, January 1978.

Hayden, Charles, Peter W. Alfvin, and Stephen D. Crocker, Multi-Microprocessor Emulation: Annual
Report for 1977, ISl/SR-78-12, April 1978.

Bisbey, Richard, and Dennis Hollingworth, Protection Analysis: Final Report, ISI/SR.78-13, July
1978.

1978 Annual Technical Report: A Research Program in Computer Science, July 1977-September
1978, ISI/SR-79-14, February 1979.

1979 Annual Technical Report: A Research Program in Computer Technology, October 1978.
September 1979, ISI/SR-80-17, June 1979.

TECHNICAL MANUALS

Gallenson, Louis, Joel Goldberg, Ray Mason, Donald Oestreicher, and Leroy Richardson, PRIM
User's Manual; ISI/TM-75-1, May 1975.

XED User's Manual: Beginning Instruction, ISI/TM-76-3, May 1976.

Hoig, Chloe, ARPANET/TENEX Primer and MSG Handling Program, ISI/TM-77-4, April 1977.

Gallenson, Louis, Alvin Cooperband, and Joel Goldberg, PRIM System: AN/UYK-20 User
Guide/User Reference Manual, ISI/TM-77-5, October 1977.

PRIM System: U1050 User Guide/User Reference Manual, ISI/TM-77-6, October 1977.

PRIM System: Tool Builder's Manual/User Reference Manual, ISI/TM-78-7, January 1978.

Hoig, Chloe, ARPA Navy CINCPAC Military Message Experiment SIGMA Primer, ISI/TM-77.9,
December 1977.

Oestreicher, Donald R., Paul Raveling, and Robert H. Stotz, HP/MME Terminal Application
Specification, ISI/TM-78-10, March 1978.

Rothenberg, Jeff, DARPA Navy CINCPAC Military Message Experiment: SIGMA Message Service
Reference Manual, ISI/TM-78.11, March 1978.

Rothenberg, Jeff, DARPA Navy CINCPAC Military Message Experiment: SIGMA Message Service
Reference Manual, ISI/TM-78-11.2, June 1979.

Holg, Chloe, the JOY of TENEX and TOPS-20...in two parts: Part One, ISI/TM-79.15, March 1979.

Holg, Chloe, the JOY of TENEX and TOPS-20...in two parts: Part Two, ISI/TM-79.16, March 1979.

Bisbey, Richard II, Dennis Hollingworth, and Benjamin Britt, Graphics Language (Version 2. 1),
ISI/TM.80-18, July 1980.

